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ABSTRACT: Future developments in materials science engineering will be greatly influenced by the application
of machine learning for determining the properties of concrete, especially its compressive strength. This research
predicts the compressive strength of concrete with eight independent variables, including cement, blast furnace
slag, fly ash, water, super plasticizers, coarse aggregate, fine aggregate, and age using supervised machine
learning (ML) techniques of linear regression (LR) and light gradient boosting machine (LGBM). The ML models
are fed a total of 1030 data-sets using a 70:30 split ratio for training and testing. Performance metrics like
𝑅2, 𝑀𝐴𝐸, 𝑀𝑆𝐸, and RMSE are used to assess how well the ML models are in making predictions. From the
research, the LR model (𝑅2 value of 0.607) is less effective than the LGBM model (𝑅2 value of 0.920) in predicting
compressive strength. Furthermore, feature importance predicted by LGBM shows that the cement content (2331), fine
aggregate (2200), and coarse aggregate (2076) all significantly influence the prediction of concrete compressive strength.
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1. Introduction

In the field of materials science, machine learning (ML)
is widely used. ML is a branch of Artificial Intelligence
(AI) that uses algorithms to self-learn and enhance its
performance using past data-sets. ML algorithms will
automatically learn and get better over time with very
little human involvement [1]. AI and ML have already
been used in engineering to overcome issues in various
structural engineering domains [2]. Further applica-
tions of machine learning include the prediction and
evaluation of concrete characteristics, the improvement
of finite element modelling of buildings, and building
structural design and performance assessment [3].
Compressive strength is the most important of the
several concrete properties, as it is used to evaluate
the performance of structures, from new structural
design to old structural assessment [4]. Cement, water,

fine aggregate, and coarse aggregate are the four main
ingredients of concrete [5] . To improve the quality of
concrete, additional materials such as industrial wastes
or by-products are occasionally added [6]. Each of the
ingredients has its unique properties that contribute
to the overall strength of the concrete. Cement has
a significant impact on the most critical elements of
a concrete mixture, including workability, compres-
sive strength, drying shrinkage, and durability. Water
starts the cement’s hydration process and gives the
mixture workability. The ratio of water to cement is
important because too little water can make the con-
crete difficult to work with and too much water can
weaken it [7]. Fine aggregates are typically made up
of natural sand or broken stone, with the majority of
the particles going through a 3/8-inch screen. Strength
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Figure 1: Boxplot of nine variables

is increased because it fills up the voids between ce-
ment and coarse particles, providing better particle
packing. Coarse aggregates are any particles larger
than 0.19 inches, nevertheless, their typical diameter
ranges from 3/8 to 1.5 inches. It gives concrete con-
struction strength, thermal and elastic properties, as
well as dimension and volume stability. Fly ash is
an additional cementitious substance that decreases
permeability and increases workability and is produced
as a byproduct of burning coal [8]. Blast furnace slag
is a byproduct produced during the creation of pig
iron, or iron and steel. The benefit of it is being able
to replace more cement, allowing for up to 9% in ce-
ment cost reductions when the ratio of slag to cement
content is 50% [9]. Super plasticizers are polymeric
dispersant that are utilized in cementitious materials.
It enhances workability without adding more water and
lowers the amount of water needed to reach a specific
workability level [10]. Age refers to the period that
passes after the concrete is placed. Continuous hydra-
tion causes concrete to get stronger over time. With
machine learning becoming more and more popular,
several research was conducted to utilize ML tech-
niques. To predict the concrete compressive strength,
various empirical and statistical models like linear and

nonlinear regression algorithms were used [11]. Sev-
eral types of concrete, including conventional [12],
high-performance [13], ultra-high performance [3],
and green concrete [14] with additional cementitious
materials including fly ash, blast furnace slag, and re-
cycled aggregates, were generally done to predict their
compressive strength. Other studies have successfully
predicted high-performance concrete (HPC) contain-
ing silica nanoparticles and copper slag compressive
strength using the artificial neural network (ANN) algo-
rithm [15]. Similarly, with the previous, it forecasted
the compressive strength of concrete, achieving a value
of R2 as high as 0.90 [16]. Nguyen [17] obtained
good output accuracy using gradient boosting regres-
sor (GBR) and extreme gradient boosting (XGBoost)
to predict the compressive and tensile strength of HPC,
although he used four machine-learning algorithms in
his research. Kumar [18] predicted the compressive
strength of lightweight concrete (LWC) by introducing
several machine-learning algorithms, and the best is
the support vector machine (SVM) model. Zhang [19]
predicted the lightweight self-compacting concrete
uni-axial compressive strength while also performing
analysis on eight input variables such as characteristic
importance, by using random forest (RF).
In this study, machine learning is used for predicting
concrete compressive strength. The data set used in
this paper was acquired in an experiment conducted
at the Chinese University of Taiwan by Professor Yi-
Zheng Yeh and his group. The data set was donated to
the University of California, Irvine’s Machine Learn-
ing Laboratory for free. Professor Yi-Zheng Yeh and
his colleagues measured the compressive strength of
concrete by creating 150 mm-tall cylindrical concrete
specimens and testing them using traditional com-
pressive methods following a standard curing period in
which the eight variables were gathered [20]. To choose
and prepare important characteristics for model input,
feature engineering is applied. The job complexity is
then taken into consideration using machine learning
models and techniques, including linear regression and
Light Gradient Boosting Machine (LGBM). To predict
concrete strength, the model first learns patterns and
correlations from past data during the training phase.
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Figure 2: Histogram distribution plot of nine

Metrics like R-Two, Mean Square Error, Root Mean
Square Error, and Mean Absolute Error are employed
for assessment during training and testing to measure
the model performance on untested data. The trained
model may be then used to provide future predictions
in real time. This helps make better decisions and
improve efficiency by incorporating machine learning
to predict concrete strength.

2. Method & Materials
2.1. Datasets
The datasets that will be used to conduct this study
are shown below in Table 1. Table 1 shows a sample
dataset used for this research. The dataset contains
9 variables, where 8 of them (cement, blast furnace
slag, fly ash, water, superplasticiser, coarse aggregate,
fine aggregate, age) are the quantitative input variable
(given unit: 𝑘𝑔/𝑚3) and (given unit: days) used to
predict the quantitative output variable, compressive
strength (given unit: MPa, megapascals).

2.2. Exploratory Data Analysis (EDA)
To understand this dataset more intuitively, descriptive
statistics were performed to gain more insight into the

Figure 3: Scatterplot of nine variables.

dataset. The following Table 2 shows summary statis-
tics from the datasets. Figure 1 shows the plotting of
box plots of the nine variables in the datasets. For each
graph, the straight line on top is the value of maximum,
the straight line at the bottom is the value of minimum,
and the horizontal line in each box is the value of me-
dian. Diamond-shaped represents the outliers. Figure 2
shows the plotting of histogram for each variable, while
also reflecting the distribution for the attributes and
fitting the corresponding normal distribution curves.
Figure 3 shows the scatterplot graph for each attribute
corresponding to the concrete compressive strength.
Figure 4 is the Pearson heatmap coefficient. The corre-
lation coefficient between two variables is represented
by each cell in the heatmap, with colour intensity indi-
cating the correlation’s strength and direction. Colours
that indicate positive correlations are blue, while those
that indicate negative correlations are red.

2.3. Machine Learning Approach
2.3.1. Linear Regression (LR)
A more advanced from the simple regression model,
linear regression (LR) finds out the correlation
between two or more explanatory variables and a
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Table 1: A sample dataset (first 10 rows)

Cement Blast Furnace Fly Ash Water Super Coarse Fine Age Strength
Slag Water plasticizers Aggregate Aggregate

540 0 0 162 2.5 1040 676 28 79.99
540 0 0 162 2.5 1055 676 28 61.89

332.5 142.5 0 228 0 932 594 270 40.27
332.5 142.5 0 228 0 932 594 365 41.05
198.6 132.4 0 192 0 978.4 825.5 360 44.3
266 114 0 228 0 932 670 90 47.03
380 95 0 228 0 932 594 365 43.7
380 95 0 228 0 932 594 28 36.45
266 114 0 228 0 932 670 28 45.85
475 0 0 228 0 932 594 28 39.29

Table 2: Summary statistics

count mean std min 25% 50% 75% max

Cement 1030.0 281.167864 104.506364 102.00 192.375 272.900 350.000 540.00
Blast Furnace Slag 1030.0 73.895825 86.279342 0.00 0.000 22.000 142.950 359.4

Fly Ash 1030.0 54.188350 63.997004 0.00 0.000 0.000 118.300 200.1
Water 1030.0 181.567282 21.354219 121.80 164.900 185.000 192.000 247.0

Superplasticizer 1030.0 6.204660 5.973841 0.00 0.000 6.400 10.200 32.2
Coarse Aggregate 1030.0 972.918932 77.753954 801.00 932.000 968.000 1029.400 1145.0
Fine Aggregate 1030.0 773.580485 80.175980 594.00 730.950 779.500 824.000 992.6

Age 1030.0 45.662136 63.169912 1.00 7.000 28.000 56.000 365.0
Strength 1030.0 35.817961 16.705742 2.33 23.710 34.445 46.135 82.6

numerical response variable. This study investigated
how applicable LR is. The general least square is
given with a problem with n inputs (or independent
variables), X’s, and one output (or dependent variable),
Y, to find out the unknown parameters, as shown in
Figure 5.

2.3.2. Light Gradient Boosting Machine (LGBM)
Gradient boosting framework LGBM primarily uses
tree-based learning algorithms. Unlike other boosting
algorithms that grow the tree level-wise, LGBM splits
the tree leaf-wise. Trees grow vertically in the case of
LGBM while growing horizontally in other algorithms.
To grow, it selects for growth the leaf that has the
greatest delta loss. The loss of the leaf-wise algorithm
is less than that of the level-wise algorithm because the
leaf is fixed. In small data-sets, leaf-wise tree growth
may cause overfitting and raise the model’s complexity.

2.3.3. Performance measurement
The performance measurement model used to calculate
each model’s accuracy is displayed in the equations
below. The coefficient of determination (𝑅2), mean
absolute error (MAE), mean square error (MSE), and
root mean square error (RMSE) are the four perfor-
mance measurement models. These were introduced
to accurately assess how well LR and LGBM are in
predicting the compressive strength of concrete. The
accuracy of the model is determined by comparing the
actual data with the output variable’s predicted results.

2.3.4. Coefficient of determination (𝑅2)

𝑅2 = 1 − 𝑆𝑆res
𝑆𝑆total

= 1 −
∑𝑛

𝑖=1( 𝑦̂𝑖 − 𝑦𝑖)2∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̄𝑖)2 (1)

where, 𝑆𝑆res = sum of squared residuals, 𝑆𝑆total =
total sum of squares, 𝑦̂𝑖 = mean of all the concrete
compressive strength.
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Figure 4: Pearson heatmap correlation.

2.3.5. Mean Absolute Error (MAE)

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦̂𝑖 | (2)

n = the total number of samples in the dataset, 𝑦𝑖 =
actual value of concrete compressive strength, 𝑦̂𝑖 = the
predicted value of concrete compressive strength.

2.3.6. Mean Square Error (MSE)

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
(𝑖=1)

(𝑦𝑖 − 𝑦̂𝑖)2 (3)

2.3.7. Root Mean Square Error (RMSE)

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 =

√√√
1
𝑛

𝑛∑︁
(𝑖=1)

(𝑦𝑖 − 𝑦̂𝑖)2 (4)

3. Results and Discussions

3.1. Performance measurement for both model

Table 3 below displays the testing results for LR and
LGBM models. LGBM has been able to outperform
LR in each of the four accuracy metrics. With an
𝑅2 value of 0.920, the LGBM model set higher than
the LR model and approaches the value of 1. In the
meantime, LGBM generates lower errors compared to
LR. This overall shows that the LGBM model gives
higher prediction accuracy and maintains lower errors
than the LR model.

3.1.1. Relationship between actual and predicted val-
ues for both models

From the LR model, the trend lines with fitted equa-
tions of 𝑦 = 0.55𝑥 + 16.31, do not follow the ideal
𝑦 = 𝑥 and have broader dispersion. Results can be

Table 3: Testing results for LR and LGBM

Testing Results

Models R2 MAE MSE RMSE

LR 0.607 8.208 106.56 10.32
LGBM 0.920 2.992 21.61 4.649

Figure 5: Illustration of linear regression.

considered more accurate if the prediction approaches
the diagonal line. The blue dots are much more spread
and, therefore exhibit a weak linear relationship be-
tween the predicted and actual values. However, this
is not the case for the LGBM model. There is a strong
linear relationship between the predicted and the ac-
tual values. The trend lines with fitted equations of
𝑦 = 0.92𝑥 + 2.52, only had a very little dispersion
which follows the ideal linear function, 𝑦 = 𝑥. Points
in the LGBM model are nearer to the diagonal line,
therefore the LGBM model performs better, in other
words, more accurate than the LR model. This indi-
cates that the values predicted by applying the LGBM
model to predict the concrete compressive strength are
relatively close to the actual values compared to the
LR model. This research also computed the effect of
each input variable to see if the eight input variables
influence the final compressive strength. The graph
in Figure 9 shows the coefficient magnitude of feature
importance from the LR model. It can be seen that

Figure 6: Architecture of LGBM model.
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Figure 7: Predicted vs. actual values of the LR model.

Figure 8: Predicted vs. actual values of the LGBM model.

the only variable exceeding 12 was cement, while the
other variables fell under 10. This means that cement
is the most contributing variable to the compressive
strength, followed by blast furnace slag, age and fly ash.
However, water is at the bottom of the graph as the only
variable with a negative coefficient of magnitude. This
result did not quite follow the assumption mentioned
earlier in this paper, where the main and the most
important factors of variables should be cement, water,
fine aggregate, and coarse aggregate. This may be due
to the LR model capturing the linearity of variables
in contributing to the compressive strength but does
not consider the complexity such as the correlation of
variables to each other in contributing to the overall
compressive strength. Table 4 shows the coefficient
magnitude of feature importance for each variable in
descending order. The compressive strength of con-
crete can be predicted with a high degree of accuracy
using the LGBM model developed in this research. To
visually represent the impact of these input variables
on the LGBM model towards the compressive strength,
the graph in Figure 10 is plotted. From this figure,
it is shown that the three features that exceeded 2000

Table 4: Coefficient magnitude of feature importance from
the LR model

Feature Importance
(coefficient magnitude)

Cement 12.504414
Blast Furnace Slag 9.254417

Age 6.929565
Fly Ash 6.063005

Fine Aggregate 1.797203
Coarse Aggregate 1.702513
Superplasticizer 1.666422

Water -2.409308

Figure 9: Features importance from the LR model.

Figure 10: Feature importance from the LGBM model.

Table 5: Importance gain of feature importance from the
LGBM model

Feature Importance
(gain)

Cement 2331
Fine Aggregate 2200

Coarse Aggregate 2076
Age 1811

Water 1724
Superplasticizer 1493

Blast Furnace Slag 1050
Fly Ash 527
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importance gain where cement, fine aggregate, and
coarse aggregate features have a dominant influence
on compressive strength, according to the theory dis-
cussed. Although we expected the water to fall after
the three features, it does not place far below the graph,
only to be below the feature age that falls right under
coarse aggregate. We can say that LGBM gives us the
result aligned with our assumption. Table 4. shows
the importance gain of feature importance for each
variable in descending order.

4. Conclusion

LR model is a linear based model, where the
algorithms only capture the linear relationship
between variables X and Y. If we refer to figure 3, the
Pearson correlation heatmap shows that cement, age,
superplasticiser, and blast furnace slag have an impact
on the compressive strength. This is true because the
LR model feature importance shows three variables
(cement, blast furnace slag, age) out of four from
the one shown in the Pearson correlation heatmap.
However, just like the Pearson correlation heatmap,
the LR model only captures linearity patterns in the
datasets, not other complexity factors. LR model is
also sensitive to outliers. During EDA, it is important
to deal with outliers properly so that they won’t
affect the model’s coefficient and subsequently its
prediction. Another factor that must be taken into
account is that the LR model does not detect the
non-monotonic relationship, in which the variables
may not be consistently increasing and decreasing.
Lastly, the LR model performs less on a large dataset
and with high numbers of features. LGBM is a
tree-based model, where its algorithms can capture
patterns like complex nonlinear relationships and the
interactions between variables. If we refer to the
assumption made, we can see that the main ingredients
of concrete are cement, water, fine aggregate, and
coarse aggregate. We also assume that being the main
ingredient will also be the major factor in contributing
to the compressive strength. This is proven by the
LGBM model where also, out of four mentioned
earlier in this paper, three were predicted by the
model, which are cement, fine aggregate, and coarse

aggregate. LGBM is much more robust in dealing
with outliers, which prevents them from affecting its
coefficient during prediction. Another reason that
the LGBM model behaves more accurately is that
it detects the non-monotonic relationship between
variables in a dataset. The leaf-wise architecture of the
LGBM model allows it to handle larger datasets. In
conclusion, the LGBM model performs better than the
LR model with the 𝑅2, MAE, MSE and RMSE equal
to 0.920, 2.992, 21.613 and 4.649, respectively. LR
model, however, has lesser accuracy with 𝑅2 equal to
0.607 while the error values of MAE, MSE and RMSE
are equal to 8.207, 106.56, and 10.32, respectively.
Therefore, the LGBM model can predict the concrete
compressive strength much more precisely compared
to the LR model.
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