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ABSTRACT:
Background: The Nuclear Shell Model single particle energy states have been successfully determined by solving
time-independent Schrödinger equation (TISE) with the Woods-Saxon potential along with spin-orbit coupling terms.
However for an under graduate or a post graduate student, solving this analytically is a difficult task. So in order to
obtain single particle energy states, a simple numerical method is needed to solve the TISE, which can be easily
implemented in a worksheet environment.
Purpose: Single particle energy states as described by nuclear shell model are obtained for doubly magic nuclei using
Gnumeric worksheet environment. The time-independent Schrödinger equation (TISE) for a nucleus modeled using
Woods-Saxon potential along with spin-orbit coupling term has been solved numerically by choosing Matrix Numerov
method.
Methods: Numerov method rephrased in matrix form is utilised to solve time-independent Schrödinger equation
(TISE) within mean-field approximation, described by Woods-Saxon (WS) potential along with spin-orbit term, to
obtain the single particle energies for both neutron and proton states. Only the algorithm parameters, step size ‘h’ and
matrix size ‘N’ are optimized to obtain the expected energy level sequence obtained using matrix methods.
Results: The energy level sequences for doubly magic nuclei up-to 𝑍 = 82, i.e 16

8 𝑂, 48
20𝐶𝑎, 56

28𝑁𝑖,
100
50 𝑆𝑛, 132

50 𝑆𝑛 and
208
82 𝑃𝑏 .
Conclusions: Ground state configurations could be better predicted when energy level sequences are known for all
nuclei as compared to what is usually obtained from that of 208

82 𝑃𝑏 alone. An attempt is made, by incorporating this
tool within the framework of guided enquiry strategy (a constructivist approach to learning), to actively engage the
students in assigning appropriate 𝐽 𝜋 configurations for ground states of nuclei neighboring the doubly magic ones.
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1. Introduction

Shell model [1] has been one of the most successful
models to have explained evidence for magic numbers,
that has emerged from binding energy data. While
harmonic oscillator potential along with inclusion of
spin-orbit term has been very effective in obtaining
shell closures at magic numbers, actual energy level
sequencing as seen from experimental data is better
deduced by utilizing a rounded square well potential as
demonstrated by WS potential [2]. Even though square

well and harmonic oscillator potentials are included
in both under-graduate(UG) and post-graduate(PG)
nuclear physics courses [3], they are not dealt beyond
establishing the fact that magic numbers result due
to 𝐿̄.𝑆 splitting that gives rise to levels with higher
j-values corresponding to a particular N-oscillator
getting clubbed with those of a lower (N-1) oscillator.
There is no way to judge the magnitude of splitting
due to this spin-orbit coupling and hence different
textbooks [4, 5, 6] present varying energy level
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sequences which could lead to difficulties while
assigning the ground state total angular momentum 𝐽

and spin-parities (−1)ℓ for different nuclei. Another
important lacuna in the pedagogy of topics in this
subject is the lack of lab activities that enhance
interaction with the content. Our physics education
research (PER) group has been focusing on this
much needed aspect and have developed various
experimental [7, 8, 9] and simulation [10, 11, 12, 13]
activities to supplement the classroom lectures. With
regard to single particle energy level structure, we
have solved the TISE for WS potential along with
spin-orbit term, utilizing matrix methods technique
employing sine wave basis in Scilab [10]. In spite
of the simplicity of sine basis, the technique still
requires determining integrals that appear in the matrix
elements numerically. This makes it invariable to use
a programming environment such as Scilab. So as to
overcome this limitation and keep ease of simulating
the problem using simple worksheet environment,
matrix methods numerical technique has been replaced
with Numerov method rephrased in matrix form [14].

In this paper, we utilize model parameters obtained
through optimization, while solving TISE using matrix
methods [10], with respect to available experimental
single particle energies [15]. The nuclear shell model
with interaction potentials based on these model pa-
rameters, which are rephrased in appropriate choice
of units, is described in Section II. A brief discussion
on numerical Numerov method and its algorithm are
given in Section III. The implementation details, for
a typical example of 40

20𝐶𝑎 using Gnumeric worksheet
environment have been presented in a step by step
approach in Appendix. The algorithm parameters are
optimized to obtain convergence of single particle en-
ergies with those obtained using matrix methods [10]
and final results are discussed in Section IV along with
our initial attempts at implementation of a pilot study,
by incorporating this tool into guided inquiry strategy
(GIS) framework. Finally, we draw our conclusions in
Section V.

2. Method & Materials

2.1. Nuclear Shell Model using Woods-Saxon potential

The modeling methodology [16] has been described
in great detail in our previous paper on Shell model
simulation [10]. So, only a brief description of the
potentials rephrased in MeV and fm units are given here.
In shell model, a nucleus of mass number A, consisting
of N neutrons and Z protons has been modeled by the
assumption that each nucleon experiences a mean field
of central potential type due to rest of the nucleons.
Woods-Saxon (WS) potential, which has typically a
rounded square well shape, is one of the successful
mathematical formulations graphically represented in
Figure 2 and is given by

𝑉𝑊𝑆 (𝑟) =
𝑉0

1 + exp
(
𝑟−𝑅
𝑎

) (1)

where 𝑉0 is the depth of the well, given by [18]

𝑉0 =



−51 + 33((𝑁 − 𝑍)/𝐴) 𝑀𝑒𝑉,

for neutrons

−51 − 33((𝑁 − 𝑍)/𝐴) 𝑀𝑒𝑉,

for protons

(2)

Here, r is the distance between two interacting nucleons,
R is the radius of the nucleus, empirically obtained
as 𝑅0𝐴

1/3, with value of 𝑅0 being 1.28, a is surface
diffuseness parameter and is found to be 0.66 [10].]
Next, interaction of spin of nucleon with orbital angular
momentum of nucleon, as confirmed in experiments
[17], has been modeled by spin-orbit potential, as

𝑉𝑙𝑠 (𝑟) = 𝑉1

(𝑟0
ℏ

)2 1
𝑟

𝑑

𝑑𝑟

[
1

1 + exp
(
𝑟−𝑅
𝑎

) ](L.S) (3)

Here, L.S = [ 𝑗 ( 𝑗 + 1) − ℓ(ℓ + 1) − 3/4]ℏ2, where ℓ

is orbital angular momentum quantum number, 𝑗 =

ℓ + 𝑠 is total angular momentum quantum number
and 𝑠 is spin angular momentum quantum number
given by 1/2 for nucleons. The model parameters are
𝑉1 = −0.44𝑉0 [18] and 𝑟0 = 0.90, a proportionality
constant optimised previously by our group [10] to
obtain the right energy level sequence. In our earlier
work [10], the parameters 𝑟0 and 𝑎 were adjusted for
a fixed value of 𝑅0 during simulation to better match
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the experimental energy levels. It was found that for
𝑟0 within range 0.86 - 0.95 and 𝑎 within range 0.66 -
0.67, the 𝜒2 value comes out to be minimum.
In case of protons, Coulomb potential also needs to be
considered and is given by

𝑉𝑐 (𝑟) =



(𝑍−1)𝑒2

4𝜋𝜖0𝑟
,

for; 𝑟 ≥ 𝑅𝑐

(𝑍−1)𝑒2

4𝜋𝜖0𝑅𝑐

[
3
2 − 𝑟2

2𝑅2
𝑐

]
,

for; 𝑟 ≤ 𝑅𝑐

(4)

Here 𝑅𝑐 is the charge radius of the nucleus which in
this case is considered to be equal to radius of nucleus
R. The potential 𝑉𝑐 (𝑟) is to be rephrased in MeV units.
So, it is multiplied and divided by electron rest mass
energy, [19] 𝑚𝑒𝑐

2 = 0.511 MeV to obtain

𝑉𝑐 (𝑟) =


(𝑍−1)∗2.839∗0.511
𝑟

, for 𝑟 ≥ 𝑅𝑐

(𝑍−1)∗2.839∗0.511
𝑅𝑐

[
3
2 − 𝑟2

2𝑅2
𝑐

]
, for 𝑟 ≤ 𝑅𝑐

(5)
The radial TISE for central potentials is given by

𝑑2𝑢(𝑟)
𝑑𝑟2 + 2𝜇

ℏ2

(
𝑉 (𝑟) + ℓ(ℓ + 1)ℏ2

2𝜇𝑟2

)
𝑢(𝑟) = 𝐸𝑢(𝑟) (6)

where V(r) is net interaction potential experienced by
a neutron or a proton and second term inside bracket,
resulting from solution of 𝜃-equation, is called as
centrifugal potential 𝑉𝑐 𝑓 (𝑟) and 𝜇 is the reduced mass
given by:

𝜇 =


𝑚𝑛∗(𝑍∗𝑚𝑝+(𝑁−1)∗𝑚𝑛 )

(𝑍∗𝑚𝑝+𝑁∗𝑚𝑛 ) , for neutron
𝑚𝑝∗( (𝑍−1)∗𝑚𝑝+𝑁∗𝑚𝑛 )

(𝑍∗𝑚𝑝+𝑁∗𝑚𝑛 ) , for proton
(7)

Here, 𝑚𝑝 = 938.272 and 𝑚𝑛 = 939.565 are masses of
proton and neutron respectively, in units of MeV/c2.
The centrifugal potential 𝑉𝑐 𝑓 (𝑟) is rephrased in MeV
units, by multiplying and dividing it by 𝑐2, so that

𝑉𝑐 𝑓 (𝑟) =
ℓ(ℓ + 1)ℏ2𝑐2

2𝜇𝑐2𝑟2 (8)

The value of ℏ𝑐 = 197.329 MeV-fm.

3. Numerical Solution

3.1. Numerov technique in matrix form:

Consider TISE for a general potential V(r), given by

𝑑2𝑢(𝑟)
𝑑𝑟2 + 𝑘2(𝑟)𝑢(𝑟) = 0 (9)

where

𝑘2(𝑟) = 2𝜇
ℏ2 [𝐸 −𝑉 (𝑟) −𝑉𝑐 𝑓 (𝑟)] (10)

The advantage of this Eq. (9) is that it is linear in ’u’
having no first order derivative involved and is hence
ideally suited for solving using Numerov method. The
wave-function u(r) is expanded in Taylor series by
explicitly retaining terms up-to 𝑂 (ℎ4) and is obtained
to an accuracy of 𝑂 (ℎ6), [14]

𝑢(𝑟 + ℎ) = 𝑢(𝑟) + ℎ𝑢′(𝑟) + ℎ2

2
𝑢′′(𝑟)+

ℎ3

6
𝑢′′′(𝑟) + ℎ4

24
𝑢′′′′(𝑟) + . . . (11)

Discretizing x in steps of h as:
𝑟1, 𝑟2, . . . , 𝑟𝑛−1, 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑁 .
Here, 𝑟𝑛 = 𝑟1 + 𝑛 × ℎ

Now expressing 𝑢(𝑟𝑛 + ℎ) as 𝑢𝑛+1, so on and similarly,
𝑘 (𝑟𝑛) as 𝑘𝑛, Eq. (11) can be written as

𝑢𝑛+1 =
2(1 − 5

12ℎ
2𝑘2

𝑛)𝑢𝑛 − (1 + 1
12ℎ

2𝑘2
𝑛−1)𝑢𝑛−1

1 + 1
12ℎ

2𝑘2
𝑛+1

+

𝑂 (ℎ6)
(12)

Substituting from Eq. (10), 𝑘2
𝑛 =

2𝜇
ℏ2 (𝐸 −𝑉𝑛) into the

above, clubbing the terms containing 𝑉𝑛 and 𝐸 , it can
be recast into the following form:

− ℏ2

2𝜇
(𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1)

ℎ2 +

(𝑉𝑛−1𝑢𝑛−1 + 10𝑉𝑛𝑢𝑛 +𝑉𝑛+1𝑢𝑛+1)
12

(13)

= 𝐸
(𝑢𝑛−1 + 10𝑢𝑛 + 𝑢𝑛+1)

12
(14)

One has to keep in mind that whatever may be the
potential, if wave-function were to be normalised, it
should tend to 0 as x tends to ±∞. This implies, one
has to choose the region of interest (RoI) large enough
to ensure that the wave-function dies down to zero in
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either direction. That is, x values are limited to an
interval such as [𝐿1, 𝐿2], such that 𝑢 goes to 0 at both
ends of the interval. More specifically,

𝑢1 = 𝑢(𝑟1 = 𝐿1) = 0 (15)

and
𝑢(𝑟𝑁 = 𝐿2) = 0 (16)

Expanding the above equation for all intermediate
points ( 𝑗 = 2, 3, . . . , 𝑁 − 1), one will get a matrix
equation as (

−ℏ2

2𝜇
𝐴 + 𝐵𝑉

)
𝑢 = 𝐸𝐵𝑢 (17)

where in, 𝑢 is a column vector
(𝑢2, . . . , 𝑢𝑛−1, 𝑢𝑛, 𝑢𝑛+1, . . . , 𝑢𝑁−1),
Similarly, V is a column vector
(𝑉2, . . . , 𝑉𝑛−1, 𝑉𝑛, 𝑉𝑛+1, . . . , 𝑉𝑁−1), but is con-
verted into a diagonal matrix with these values along
its central diagonal. Matrices A and B are given by

𝐴 =
𝐼−1 − 2𝐼0 + 𝐼1

ℎ2 (18)

and
𝐵 =

𝐼−1 + 10𝐼0 + 𝐼1
12

(19)

where 𝐼𝑝 represents a matrix consisting of 1’s along
𝑝𝑡ℎ diagonal and zeros elsewhere, here 𝑝 can be posi-
tive (above the main diagonal, i.e 𝐼1), zero (the main
diagonal, i.e 𝐼0) or negative (below the main diagonal,
i.e 𝐼−1).
Multiplying Eq. (17) by B−1 on both sides, gives TISE
as a matrix equation, utilising Numerov method,(

−ℏ2𝑐2

2𝜇𝑐2 𝐵−1𝐴 +𝑉
)
𝑢 = 𝐸𝑢 (20)

with an error of 𝑂 (ℎ6).
Notice that a factor of 𝑐2 is introduced in both numer-
ator and denominator to ensure the units are in 𝑀𝑒𝑉

and 𝑓 𝑚 as required in nuclear physics.
This is the final equation that needs to be solved
numerically to get energy eigen-values and eigen-
functions of a particle interacting with a given po-
tential V(r). The imposition of boundary conditions as
𝑢1 = 𝑢𝑁 = 0 is equivalent to embedding the potential

of interest, inside an infinite square well potential. Fi-
nally, (𝑁 − 2) × (𝑁 − 2) sub-matrices of A and B are
utilised to solve for the energy eigen-values and their
corresponding eigen-vectors.

4. Algorithm for implementation in Gnumeric:

A step by step approach to determining the single
particle energies for protons of 40

20𝐶𝑎 is presented.

a) Initialisation of parameters: There are two
sets of parameters:

i. Physical system parameters:
Object and interaction variables constitut-
ing as inputs and state variables which
we wish to determine, are outputs. Fig-
ure (1) show object variables, interaction
variables, Algorithm variables, input vari-
ables and other variables required for the
calculations.

ii. Algorithm parameters:
that arise from discretization of continuous
variables and limiting the infinitely large
quantities to finite values such as region of
interest. The step size is chosen as ℎ = 0.1
and is given in cell F17.

b) Potential Definition:
First the values of ’r’ are generated from 0.1 to
(3×𝑅) with step-size ℎ = 0.1 from A22 to A153,
and to get the expected results, corresponding
matrix size is 131 × 131. Then, four potentials
are determined using the following formula for
a particular ℓ and j values:

i. Centrifugal potential𝑉𝐶𝐹 , in cell B22 type
the formula:

=($J$8*($J$8+1)*$J$14^2*
($A22^(-2)))/(2*$J$13)

ii. Woods-Saxon potential 𝑉𝑊𝑆 , in cell D22
by typing the formula:

=$F$9*(1+$C22)^(-1)

iii. L.S potential 𝑉𝐿𝑆 , in cell F22 by typing
formula:

© 2024 Author(s). This article is published under the CC-BY license at http://jpr.vyomhansjournals.com.
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Figure 1: Initializing the parameters for the system

=-$F$14*$F$13^2*$J$16*$C22*
$E22*($F$10*$A22)^(-1)

where, the L.S term in cell J16 is calculated
by formula:

=$J$9*($J$9+1)-$J$8*
($J$8+1)-3/4

iv. Coulomb potential, for proton, is given by
typing formula:

=$B$14*0.511*2.839*
(3*$B$15^2-$A22^2)/(2*$B$15^3)

in cell G22 up-to radius ’R’ of the nucleus.
After that in cell G65, type the formula:

=0.511*2.839*$A65^(-1)*$B$14

which gives the Coulomb potential outside
the range of nuclear radius.

v. In cell H22, the net potential is determined
by typing the formula as:

=$B22+$D22+$F22+$G22

Figure (2a) consists of the potential val-
ues for the few r values and Figure (2b)
shows the plot of Woods-Saxon potential
of 1𝑠1/2,1𝑝1/2 and 1𝑝3/2 states for proton,
showing that inclusion of angular momen-
tum on L.S coupling affects the Woods-
Saxon potential.

c) Determination of single particle energies:
This step consists of generating the following
matrices and the same steps can be easily applied
to matrix of any size.

i. In Sheet 2, B-matrix is obtained as follows.
Remember, B-matrix is constant for all
problems. First generate index values for
rows and columns as 1 to 5 from A43: A8
and B33: F3. In cell B4, the formula is
given as

=if($A4=B$3,10/12,
if($A4+1=B$3,1/12,
if($A4-1=B$3,1/12,0)))

This is repeated by dragging across till EB4
and then downwards to EB134 to obtain the
tridiagonal B-matrix as shown in Figure
(3a).

ii. In Sheet 3, the inverse of B, is obtained by
selecting cells B43: EB134 and giving the
formula as

=minverse(’Sheet 2’!B4:EB134)

press Ctrl+Shift+Enter keys together to
obtain matrix-𝐵−1 as in Figure (3b).

iii. In Sheet 4, A-matrix is generated similar
to B-matrix, except that we need step size
’h’ from Sheet 1 available in cell F17, say.
Then, In cell D4, type =′ 𝑆ℎ𝑒𝑒𝑡1′!𝐹17.
In cell D3, insert the value of function
𝑓 = −ℏ2𝑐2

2𝜇𝑐2 from cell J15 of Sheet 1. Then,
in cell B7, the formula is given as

=if($A7=B$6,(-2*$D$3/$D$4^2),
if($A7+1=B$6,($D$3/$D$4^2),
if($A7-1=B$6,($D$3/$D$4^2),0)))
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Figure 2: (a) Total Interaction potential 𝑉 (𝑟) = 𝑉𝑐 𝑓 (𝑟) +𝑉𝑊𝑆 (𝑟) +𝑉𝑙𝑠 (𝑟) +𝑉𝑐 (𝑟) for proton (b) Plots of 1𝑠1/2, 1𝑝1/2 and
1𝑝3/2 states for proton, showing the effect of Spin-orbit interaction in Woods-Saxon potential.

Figure 3: (a) Generating matrix-B (b) Generating matrix-B−1 (c) Generating matrix-A (d) Generating matrix-B−1*A (e)
Generating matrix-V (f) Generating Hamiltonian matrix

and dragged appropriately to generate the
required values as shown in Figure (3c).

iv. To obtain matrix-𝐵−1 ∗𝐴, in Sheet 5, select
cells B4 : F8 and give formula:

=mmult(Sheet3!B4:EB134,’Sheet 4’!
B7:EB137)

The obtained matrix is shown in Figure
(3d).

v. Generate-V-matrix in Sheet 6, by giving
the formula in cell B4 as

=if($A4=B$3,’Sheet 1’!$H22,0)
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so that only diagonal elements get popu-
lated as those of net potential values from
Sheet 1 and seen in Figure (3e).

vi. In Sheet 7, finally we generate the Hamil-
tonian matrix (i.e. matrix-𝐵−1 ∗ 𝐴 +𝑉) by
simply giving the formula in B4 as

=(Sheet5!B4:EB134+’Sheet 6’
!B4:EB134)

and dragging the formula to fill values from
B4: EB134 as seen in Figure (3f).

vii. The main feature of Gnumeric which
makes it different from other worksheet
environments such as MS-Excel or open
Office Calc. is that, it has an eigen-value
solver.
Now, the eigen-values and corresponding
eigen-vectors are obtained in Sheet 8 by
selecting cells B4: EB135, a matrix of size
132 × 131, with an extra row to incorporate
the eigen values. Each eigen vector of size
131 × 1 will be available below each of the
eigen values in the first row. The formula
is typed as

=eigen(Sheet7!B4:EB134)

and all the three keys Ctrl+Shift+Enter
pressed together. The resultant values are
shown in Figure (4a) and (4b).

d) Generating the energies for different ℓ and 𝑗

values: Now, the bound state energies, those for
which eigen values are negative, are tabulated
for different values of ℓ and 𝑗 .

• Starting from ℓ = 0, s-states, in which case
𝑗 = 0.5 alone exists

• for ℓ = 1, p-states, we have two values of j:
𝑗 = 0.5 and 𝑗 = 1.5.

• Similarly for ℓ = 2, d-states, 𝑗 takes values
1.5 and 2.5 , and so on.

This is continued till no bound states are obtained
for particular ℓ and 𝑗 values.

5. Results and Discussions:

In this section, we will first validate our approach to
obtain energy eigen-values and eigen-functions using
Woods-Saxon potential with 𝐿̄.𝑆 coupling for both
neutron and proton for doubly magic nucleus 40

20𝐶𝑎.
This is done by comparing our results with available
experimental results and those obtained numerically
by using matrix method with Fourier basis [10] for
different angular momentum values ℓ and j. The results
are tabulated in Table 1.
The obtained energy eigen values are in good agree-

ment with experimental energy values of different
neutron and proton single particle states for step size of
h=0.1 thus validating our approach. One can observe
from the Table 1, that while the numerical or simulated
values are below than those of experimental ones for
lower proton and neutron states, the trend is opposite
for higher states. This discrepancy arises because the
optimization algorithm, in its attempt to minimize 𝜒2,
tends to find values close to the expected ones.
The distance parameter ’r’ is discretized as per step size
’h’ and its values are varied from 𝑟 = 0.1 to 𝑟 = 3𝑅,
where 𝑅 = 𝑅0𝐴

(1/3) . Therefore, it is necessary to
vary the size of matrix ‘N’ for different A values for
a chosen step size ‘h’. This simulation activity can
be utilised as a tool to apply GIS[20] of constructivist
approach to learning and has been done as follows:

5.1. GIS Implementation:

The students have been taken through following six step
process of GIS. All steps were implemented on online
Moodle platform [21] during COVID-19 lockdown of
university.

• Initiation: The matrix Numerov technique was
already introduced before, for solving the har-
monic oscillator potential. Next, it has been
applied to solve for single particle energies of
both neutrons and protons, as dealt with in this
paper, for Woods-Saxon potential with spin-orbit
potential. This has been explained and also
demonstrated in two successive lab sessions.

• Selection: The students were made to explore
the binding energy and separation energies
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Figure 4: Calculation of eigen-values and eigen-functions

Table 1: Single particle shell model energy values for Neutron states and Proton states of doubly magic nucleus 40
20𝐶𝑎

obtained by current work (using Matrix Numerov method [14]) with available experimental values [15] and numerical
values previously obtained by our group [10], (using Matrix method with Fourier basis) for the highest occupied levels.

States Proton states (MeV) States Neutron states (MeV)
Exp. Numerical values Exp. Numerical values
Ref[15] Ref[10] Current Ref[15] Ref[10] Current

1𝑠1/2 . . . −30.49 −30.49 1𝑠1/2 . . . −38.90 −38.90
1𝑝3/2 . . . −21.68 −21.68 1𝑝3/2 . . . −29.55 −29.55
1𝑝1/2 . . . −19.04 −19.04 1𝑝1/2 . . . −26.99 −26.99
1𝑑5/2 −15.07 −12.19 −12.19 1𝑑5/2 −22.39 −19.54 −19.54
2𝑠1/2 −10.92 −8.14 −8.14 2𝑠1/2 −18.19 −15.54 −15.54
1𝑑3/2 −8.33 −6.85 −6.85 1𝑑3/2 −15.64 −14.28 −14.28
1 𝑓 7/2 −1.09 −2.33 −2.33 1 𝑓 7/2 −8.36 −9.15 −9.15
2𝑝3/2 0.69 1.00 1.00 2𝑝3/2 −5.84 −5.42 −5.42
2𝑝1/2 2.38 2.94 2.94 2𝑝1/2 −4.20 −3.10 −3.10
1 𝑓 5/2 4.96 5.37 5.37 1 𝑓 5/2 −1.56 −1.19 −1.20

curves that they have plotted in previous ses-
sions, to identify various double magic nuclei
suitable for study. The doubly magic nuclei from
16
8 𝑂 to 208

82 𝑃𝑏 were selected. The determination
of single particle proton and neutron energy

level sequences for six double magic nuclei, are
assigned to students by dividing them into 12
groups. Each group is expected to obtain the en-
ergy level sequence of either neutrons or protons
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for the assigned nuclei by carefully following
the simulation procedure.

• Presentation: The students in each group could
be asked to present their findings to the rest of the
class so that everyone gets to know each other’s
experience. Even though all the groups could get
to expected level sequence by following the steps
correctly, some of the students have not ensured
reduction of step-size systematically. Hence,
they have come up with lower accuracy for en-
ergies even though they obtained correct level
sequence. They have been guided accordingly.

• Exploration: The collective findings were
shared with entire class and they were asked
to explore nuclei adjacent to the magic numbers
with one neutron or proton more and find out
ground state 𝐽 𝜋 configuration for each of them.

• Formulation: They were expected to formulate
their findings based on right choice of level
sequence and also figure out what they would
get if they followed the level sequence given in
their prescribed textbook [4].

• Collection: To understand variation of energy
level structure with mass number, students were
asked to plot the compiled energy data for pro-
tons and neutrons as a function of mass number
A. They were able to obtain plots similar to what
have been presented in [10].

• Assessment: They have assessed their formu-
lated ground state angular momentum and spin
configurations based on the experimental find-
ings and thus validated their outcomes. They
could be further asked to obtain the ground
state configurations of nuclei slightly away from
magic nuclei till the results obtained are in vari-
ance with those from experiments as an excer-
cise.

5.2. Outcomes from GIS:

The results matching with experimentally available
values [15] were obtained for step-size ’ℎ = 0.1’ for

doubly magic nuclei from 16
8 𝑂 to 208

82 𝑃𝑏. The value
of N (to solve N × N matrix) for each of these nuclei
are obtained as 96, 131, 138, 145, 177, 194 and 229
respectively. The obtained energy level sequences
for neutrons and protons of these nuclei are given
separately in tabular form in Tables 2 and 3. The first
four levels, 1𝑠1/2, 1𝑝3/2, 1𝑝1/2 ad 1𝑑5/2 are not shown,
as there are no discrepancies found in the ordering
of these levels across the periodic table due to our
simulation. The numerically obtained energy values
are found to match to two decimal places with those
obtained using the matrix method approach [10]. The
𝜒2-value defined as relative mean-squared error

𝜒2 =
1
𝑁

𝑁∑︁
𝑖=1

(𝐸𝑒𝑥𝑝𝑡

𝑖
− 𝐸 𝑠𝑖𝑚

𝑖
)2

|𝐸𝑒𝑥𝑝𝑡

𝑖
|

(21)

These are determined w.r.t experimental [15] and are
shown in Tables. In Tables 2 and 3, energy level
sequence obtained for lighter nuclei 16𝑂 to 56𝑁𝑖 are
shown in first column and that for 100𝑆𝑛 to 208

82 𝑃𝑏 in
last column. It can be observed that the energy level
sequence for lighter nuclei is different than that for
heavier ones. This might be because the effect of spin-
orbit coupling is different for light nuclei and heavy
nuclei which results into the change in internal struc-
ture. Also, the amount of splitting in the energy levels
is different for different mass numbers. The observed
discrepancies in energy sequence are highlighted in
red colour.
The discrepancy in level sequence for lighter nuclei
w.r.t heavy nuclei is highlighted in blue colour in both
tables; i.e for neutron and proton states. Further, it
is found that in most of the textbooks at UG and PG
level [4, 5, 6, 18, 22, 23], energy level sequence given
is different. Also, there is only single energy level
sequence given for both neutrons and protons, and that
too common for all mass ranges. But according to our
calculations as well as Bohr and Mottelson book, there
should be different energy level sequences for nuclei
across the periodic table.

Next, 𝐽 𝜋 assignments for nuclei near to doubly
magic nuclei in mass range equal to and less than
208
82 𝑃𝑏 based on our simulation, which match with
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Table 2: Single particle shell model energy states for Neutron of doubly magic nuclei 16
8 𝑂, 48

20𝐶𝑎, 56
28𝑁𝑖,

100
50 𝑆𝑛, 132

50 𝑆𝑛 and
208
82 𝑃𝑏 obtained by using Matrix Numerov method

States Numerical energy values(MeV) States
16
8 𝑂 48

20𝐶𝑎
56
28𝑁𝑖

100
50 𝑆𝑛 132

50 𝑆𝑛 208
82 𝑃𝑏

2𝑠1/2 −3.03 −14.19 −20.51 −29.27 −25.57 −30.90 1𝑑3/2
1𝑑3/2 2.11 −13.58 −20.35 −28.34 −24.46 −29.67 2𝑠1/2
1 𝑓 7/2 . . . −8.33 −14.96 −24.04 −20.78 −26.74 1 𝑓 7/2
2𝑝3/2 . . . −4.90 −10.56 −20.08 −18.07 −25.07 1 𝑓 5/2
1 𝑓 5/2 . . . −1.87 −8.41 −19.75 −17.15 −23.59 2𝑝3/2
2𝑝1/2 . . . −3.00 −8.32 −18.19 −16.06 −22.87 2𝑝1/2
1𝑔9/2 . . . 1.16 −5.25 −16.07 −14.01 −21.20 1𝑔9/2
2𝑑5/2 . . . . . . −1.70 −10.01 −9.79 −18.50 1𝑔7/2
3𝑠1/2 . . . . . . −0.94 −11.17 −9.76 −17.20 2𝑑5/2
1𝑔7/2 . . . . . . 3.52 −8.36 −7.99 −15.76 2𝑑3/2
2𝑑3/2 . . . . . . . . . −9.05 −7.74 −15.44 3𝑠1/2
1ℎ11/2 . . . . . . . . . −7.69 −6.83 −15.24 1ℎ11/2
2 𝑓 7/2 . . . . . . . . . −2.95 −0.94 −11.28 1ℎ9/2
3𝑝3/2 . . . . . . . . . −1.53 −2.61 −10.64 2 𝑓 7/2
3𝑝1/2 . . . . . . . . . −0.53 −0.57 −8.90 1𝑖13/2
1ℎ9/2 . . . . . . . . . 0.59 −1.34 −8.45 3𝑝3/2
. . . . . . . . . . . . . . . 0.03 −8.36 2 𝑓 5/2
. . . . . . . . . . . . . . . . . . −7.55 3𝑝1/2
. . . . . . . . . . . . . . . . . . −4.04 2𝑔9/2
. . . . . . . . . . . . . . . . . . −3.49 1𝑖11/2
. . . . . . . . . . . . . . . . . . −2.24 1 𝑗15/2
. . . . . . . . . . . . . . . . . . −2.07 3𝑑5/2
. . . . . . . . . . . . . . . . . . −1.41 4𝑠1/2
. . . . . . . . . . . . . . . . . . −1.01 2𝑔7/2
. . . . . . . . . . . . . . . . . . −0.82 3𝑑3/2
𝜒2 0.24 1.18 0.09 0.06 0.03 0.06 . . .

experimentally[15] available energy sequence, are tab-
ulated. These assignments are compared with those
calculated using energy level sequence given in usu-
ally referred textbook Introductory Nuclear Physics by
Kenneth Krane[4] by considering only the energy level
sequence of lighter nuclei, and are shown in Table 4.
The discrepancies in spin assignments are highlighted
in blue colour. These discrepancies are also observed
in other textbooks [5, 6, 17, 22, 23] as well.
Hence, from our observations, the level sequence for

lighter mass range and heavy mass range nuclei can
be modified accordingly so as to provide students with
data consistent with experiments.

6. Conclusion:

The time-independent Schrödinger equation (TISE)
for a nucleus modeled using Woods-Saxon potential
along with spin-orbit coupling term has been solved
numerically by choosing Matrix Numerov method.
The main advantage of matrix Numerov method
is that it can be easily extended to any arbitrary
potential of interest. It is implemented in Gnumeric
worksheet environment to obtain numerical solutions
of single-particle neutron and proton states for doubly
magic nuclei 40

20𝐶𝑎. Then, using guided enquiry
strategy, a Constructivist approach, students were
grouped and encouraged to obtain energy level
sequences for other doubly magic nuclei up-to 𝑍 = 82,
i.e 16

8 𝑂, 48
20𝐶𝑎, 56

28𝑁𝑖,
100
50 𝑆𝑛, 132

50 𝑆𝑛 and 208
82 𝑃𝑏. Based

on these obtained level structures, students obtained
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Table 3: Single particle shell model energy states for Proton of doubly magic nuclei 16
8 𝑂, 48

20𝐶𝑎, 56
28𝑁𝑖,

100
50 𝑆𝑛, 132

50 𝑆𝑛 and
208
82 𝑃𝑏 obtained by our calculations using Matrix Numerov method

States Numerical energy values(MeV) States
16
8 𝑂 48

20𝐶𝑎
56
28𝑁𝑖

100
50 𝑆𝑛 132

50 𝑆𝑛 208
82 𝑃𝑏

2𝑠1/2 −0.21 −15.18 −10.71 −14.25 −26.11 −24.16 1𝑑3/2
1𝑑3/2 4.82 −14.55 −10.60 −13.05 −24.61 −22.26 2𝑠1/2
1 𝑓 7/2 . . . −9.75 −5.89 −9.83 −21.70 −20.56 1 𝑓 7/2
2𝑝3/2 . . . −4.98 −1.56 −5.58 −18.24 −18.37 1 𝑓 5/2
2𝑝1/2 . . . −2.38 0.54 −5.14 −16.97 −16.25 2𝑝3/2
1 𝑓 5/2 . . . −1.71 . . . −3.56 −15.58 −15.36 2𝑝1/2
1𝑔9/2 . . . 0.40 . . . −2.43 −14.77 −15.18 1𝑔9/2
2𝑑5/2 . . . . . . . . . 3.92 −9.37 −11.71 1𝑔7/2
1𝑔7/2 . . . . . . . . . 2.55 −9.10 −9.89 2𝑑5/2
1ℎ11/2 . . . . . . . . . . . . −7.32 −9.29 1ℎ11/2
3𝑠1/2 . . . . . . . . . . . . −6.56 −8.09 2𝑑3/2
2𝑑3/2 . . . . . . . . . . . . −6.43 −7.57 3𝑠1/2
2 𝑓 7/2 . . . . . . . . . . . . −1.18 −4.26 1ℎ9/2
1ℎ9/2 . . . . . . . . . . . . 0.330 −3.26 2 𝑓 7/2
. . . . . . . . . . . . . . . . . . −2.95 1𝑖13/2
. . . . . . . . . . . . . . . . . . −0.37 2 𝑓 5/2
. . . . . . . . . . . . . . . . . . −0.28 3𝑝3/2
𝜒2 1.53 0.31 0.48 0.25 0.03 0.11 . . .

Table 4: Nuclear single particle shell model states for Neutron and Proton of nuclei near to closed shell nuclei, according
to Ref.[4] and Current work.

Nuclei Neutron states Nuclei Proton states
Ref.[4] Current

work
Ref.[4] Current work

17
8 𝑂 1𝑑5/2 1𝑑5/2 16

9 𝐹 1𝑑5/2 1𝑑5/2
41
20𝐶𝑎 1 𝑓 7/2 1 𝑓 7/2 40

21𝑆𝑐 1𝑑3/2 1𝑑3/2
49
20𝐶𝑎 2𝑝3/2 2𝑝3/2 48

21𝑆𝑐 1 𝑓 7/2 1 𝑓 7/2
57
28𝑁𝑖 2𝑝3/2 2𝑝3/2 56

29𝐶𝑢 1 𝑓 7/2 2𝑝3/2
101
50 𝑆𝑛 1𝑔7/2 2𝑑5/2 100

51 𝑆𝑏 1𝑔9/2 2𝑑5/2
133
50 𝑆𝑛 1ℎ9/2 2 𝑓 7/2 132

51 𝑆𝑏 1ℎ11/2 2𝑑3/2
209
82 𝑃𝑏 2𝑔9/2 1𝑖11/2 208

83 𝐵𝑖 1ℎ9/2 2 𝑓 7/2

ground state total angular momentum and spin
assignment for various nuclei close to doubly magic
nuclei successfully and it could easily be extended to
test the limits of validity.
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