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ABSTRACT:
Background: Credit card fraud detection is a critical problem due to the increasing volume of online transactions
and the high costs associated with fraudulent activities. Previous studies in this field have investigated various
machine-learning techniques to identify fraudulent transactions, with notable progress made through supervised
learning methods. However, these models often face challenges due to the significant class imbalance in fraud detection
datasets, where instances of fraud are much less frequent than legitimate transactions.
Purpose: As a result, there is growing interest in unsupervised techniques, such as clustering algorithms, which do not
depend on labeled data and may offer improved generalization to new and unseen fraud patterns. These unsupervised
approaches can autonomously identify anomalies by grouping transactions based on shared characteristics, making
them a valuable alternative for detecting evolving fraudulent activities.
Methods: This work explores different distance metrics in clustering algorithms such as K-Means to identify fraudulent
activity in a credit card dataset. The substantial class imbalance is highlighted by the European credit card transactions
dataset, which consists of only 0.17% of fraudulent transactions. The research utilizes multiple sampling techniques to
address class imbalance.
Results: The study found that the Euclidean distance metric produced the best results out of all potential techniques
when applied to the K-Means algorithm. It emphasizes how crucial it is to deal with class disparities and use
unsupervised methods for fraud detection in practical settings.
Conclusions: In future research, there is scope for improvements in fraud detection systems, particularly in terms of
finding enhanced algorithms and expanding data availability.

Keywords: Credit Card Fraud detection, Distance Metrics in Machine Learning, unsupervised learning, k-means
clustering, distance metrics, class imbalance

1. Introduction

Due to the growing dependence on electronic payment
methods, credit card theft has become a major concern
for businesses, consumers, and financial institutions
globally. Every day, millions of transactions take place,
and fraudulent activity not only causes large financial
losses but also erodes customer confidence in online
networks. The structure of the data makes addressing

this difficulty much more difficult, as fraudulent trans-
actions only make up a small portion of the total [1, 2].
The issue of class imbalance in transaction datasets,
characterized by the rarity of fraudulent transactions
relative to legitimate ones, necessitates the creation of
precise detection models. These models must be capa-
ble of accurately identifying fraudulent activity while
minimizing the occurrence of false positives. In previ-
ous works, there have been multiple techniques used
for credit card fraud detection which mainly included
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supervised learning algorithms such as Decision Trees,
Random Forest classifiers, and Logistic Regression
[3, 4, 5]. These methods were used to classify the data
into Fraud/Not Fraud data points. These works were
mainly a comparative study to find the best supervised
learning algorithm for credit card fraud detection [5, 6].
The proposed technique in this study involves the use
of K-Means clustering algorithm, an unsupervised
learning technique, which is a viable way to identify
irregularities without the need for pre-labeled datasets.
Additionally, our study delivers how crucial the dis-
tance metrics are for clustering accuracy, showcasing
that the model performance can be greatly improved
by comprehending their effects. The key contributions
of this study can be summarised into the following
objectives:

i) To assess how well the K-Means clustering
method uses the Manhattan, Minkowski, and
Euclidean distance metrics to detect fraudulent
credit card transactions in extremely unbalanced
datasets.

ii) To examine how different data sampling methods,
such as SMOTE, oversampling, and undersam-
pling, affect clustering performance and their
capacity to rectify class imbalance in datasets
used for fraud detection.

The dataset being analyzed consists of credit card
transactions (both fraudulent and legitimate) made by
cardholders in Europe in September 2013. There is a
notable class imbalance in class, with 492 fraudulent
transactions out of 284,807 total transactions, or just
0.172 percent of all transactions. To guarantee dataset
quality and suitability for analysis, the methodology
starts with data pre-processing, which includes address-
ing missing values and investigating dataset structure.
After that, exploratory data analysis (EDA) techniques
are used to learn more about feature characteristics,
trends, and outliers. Visualization is used to examine
the imbalance in the original dataset and the varia-
tion in transaction amounts. Several data sampling
strategies are investigated in light of the dataset’s ex-
treme imbalance, including bootstrap resampling for

undersampling and the SMOTE algorithm for oversam-
pling. By either decreasing the overrepresented class
or reproducing instances of the minority class, these
strategies seek to balance the distribution of classes
and address class imbalance. Further, a thorough study
was conducted on different types of distance metrics
i.e. Manhattan Distance, Euclidean Distance, and the
Minkowski Distance. The distance metrics were ap-
plied to the four differently sampled datasets mentioned
above. The results of which were compared to find the
best distance metric to find the optimal value of k, for
the K-means clustering analysis. The comparison study
helped identify the Euclidean distance as the optimal
distance metric to be used for K-Means clustering. The
K-Means clustering algorithm is used in the study to
find comparable groups of unlabeled data points. The
dataset is clustered to expose underlying data structures,
and then the fraud percentages and cluster distributions
are visualized for each cluster. To compare results, the
clustering technique is also applied to datasets that are
under and oversampled. The entire dataset was not
successfully used to classify transactions into fraud
and legitimate categories, despite early successes in
unsupervised clustering. This emphasizes the intri-
cacy and difficulties involved in fraud detection tasks,
underscoring the necessity of additional research and
methodological improvement. In summary, this study
advances our knowledge of credit card fraud detection
by offering new perspectives on distance metrics, data
sampling strategies, and the K-Means clustering algo-
rithm. The study further highlights the necessity of
additional research and methodological improvement
in the field of credit card fraud detection.

2. Literature Review

There has been much research on the use of supervised
learning techniques for credit card fraud detection, with
different strategies tackling issues like feature selection,
scalability, data imbalance, and real-time deployment
[7]. Based on past data, the authors have successfully
classified transactions as either legitimate or fraudulent
using a multi-layer perceptron (MLP) architecture. In
a study in 2017, the authors compared popular classi-
fiers such as Naive Bayes, Random Forest, Decision
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Trees, Support Vector Machines (SVMs), and Logistic
Regression [3]. Although the classification of text
reviews was the main focus, fraud detection can ben-
efit greatly from the insights. The following year, a
study with the same techniques was used explicitly
for credit card fraud detection. The study highlighted
standard classifiers such as Decision Trees, Random
Forest, Logistic Regression, and SVMs, emphasizing
their scalability and relevance to real-world applica-
tions. The study discussed in [8] was among the first
to use neural networks in the field of credit card fraud
detection through machine learning. This was one of
the first to show that neural networks could be used
to detect fraud because of their capacity to represent
non-linear relationships in transactional data. Using
actual transactional data, the study highlighted use-
fulness and offered insightful information on fraud
detection at a time when such applications were still in
their infancy [8]. Illebari et.al incorporated supervised
learning with a Genetic Algorithm (GA) for feature
selection, offering a more sophisticated investigation
of fraud detection [9]. Using extensive metrics like
accuracy, precision, recall, and F1-score, the study
assessed several classifiers, including Random Forest,
Logistic Regression, and SVMs. By lowering the di-
mensionality of the dataset, the application of GA for
feature selection greatly enhanced model performance.
Because of its ability to effectively handle imbalanced
data and its resistance to overfitting, Random Forest
turned out to be the best-performing algorithm. In
2023, a study centered on using automation and ma-
chine learning technologies to detect fraud in real-time
[10]. Important topics like unbalanced datasets and
dynamic transaction environments were covered in the
paper. With a focus on real-world implementation, this
study combined multiple AI methods for credit card
fraud detection. It prioritised practical applicability
by emphasising metrics like precision and recall. The
evaluation framework placed a strong emphasis on
striking a balance between false positives and nega-
tives.
From handling imbalanced datasets and dynamic en-
vironments in recent studies to overcoming compu-
tational constraints in early works, the development

of supervised learning techniques in credit card fraud
detection reflects an increasing focus on adapting to
real-world challenges [4, 5, 6, 7]. To increase the
resilience and applicability of fraud detection systems,
future research should keep filling in the gaps in scala-
bility and computational efficiency while investigating
innovative strategies like transformers. Although su-
pervised learning approaches for fraud detection have
been thoroughly studied in the past, these approaches
frequently rely on labeled datasets, which aren’t always
accessible or accurately reflect real-world situations.
The class imbalance feature of fraud detection datasets
can also be a problem for them.
By using clustering algorithms like K-Means and inves-
tigating how distance metrics can increase clustering
effectiveness, this study, on the other hand, focuses
on an unsupervised learning approach. This work
aims to address class imbalance while detecting pat-
terns in fraudulent transactions without depending on
predetermined labels by utilizing sophisticated sam-
pling techniques like SMOTE. By providing a scalable
and adaptable method to identify fraud in extremely
dynamic and unbalanced datasets, this innovative ap-
proach seeks to supplement current supervised method-
ologies.

3. Methodology

Our approach to analyzing the credit card fraud dataset
uses several key steps aimed at uncovering patterns,
anomalies, and potential indicators of fraudulent be-
havior. The steps involved in the implementation have
been summarized as follows:
Algorithm: Fraudulent Transaction Detection
Input: Dataset: European dataset containing transac-
tion information.
Output: Clusters of transactions: Transactions cate-
gorized into fraudulent and non-fraudulent clusters.
Steps:

i Implementation of K-Means algorithm on the
entire dataset.

ii Sampling the dataset into 10000 data points
which includes all 492 fraudulent transactions,
and applied the K-Means algorithm (with k=5
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Table 1: Summarization of various papers on credit card fraud detection
Paper Key Contributions Drawbacks
Credit card fraud de-
tection with a neural-
network[7]

Neural Network implementation, Han-
dling high dimensionality,Real-world
dataset usage.

Computational limitations, Limited eval-
uation metrics, Imbalanced data han-
dling.

Comparison of naive
bayes, random forest,
decision tree, support
vector machines, and
logistic regression clas-
sifiers for text reviews
classification[3]

Comprehensive classifier comparison,
Performance metrics.

No pre-processing considerations, Lack
of advanced techniques.

A machine learning
based credit card fraud
detection using the GA
algorithm for feature se-
lection [9].

Domain-Specific Application, Genetic
Algorithm for Feature Selection, High-
lighting Random Forest.

Computational Overhead, Overfitting
risk, Scalability concerns.

CreditCard Fraud De-
tection using Machine
Learning(AI) [10]

Holistic Machine Learning, Focus on
Imbalanced data, Integration of AI tech-
niques.

Scalability Concerns, Dataset depen-
dency, Lack of specificity on Model
optimization.

which indicates the fraudulent transaction per-
centage in each cluster).

iii Reducing the data to 10% of the data points
and applying K-means again, keeping the same
fraudulent transactions in data.

iv Improvement of dataset through oversampling,
undersampling, and SMOTE techniques to create
a more balanced dataset.

v Re-applying K-Means on the three different
datasets to compare the results.

Now, section 3.1 discusses the data and the environ-
mental requirements needed for the implementation.
The mathematical operations and an explanation for the
steps involved in the above-mentioned implementation
technique have been provided in detail in subsection
3.2.

3.1. Data and prerequisites

The dataset consists of a collection of credit card trans-
actions made by European cardholders in September
2013. It covers the transactions made in two days,
containing both legitimate and fraudulent transactions.
There are 492 fraudulent transactions out of a total
of 284,807 transactions, indicating a significant class

imbalance, with fraudulent transactions representing
only 0.172 percent of the total.
The dataset consists solely of numerical input variables
resulting from a Principal Component Analysis(PCA)
transformation. Features V1 through V28 are princi-
pal components derived from PCA, with ‘Time’ and
‘Amount’ being the only features not subjected to PCA
transformation. ‘Time’ indicates the elapsed seconds
between each transaction and the first one in the dataset,
while ‘Amount’ represents the transaction amount, po-
tentially useful for example-dependent cost-sensitive
learning. The ‘Class’ feature serves as the response
variable, taking a value of 1 for fraudulent transactions
and 0 otherwise [2].
For setting up the environment, a quad-core, 64-bit
processor, with 4 GB of RAM, and 80 GB of disk
space was needed for optimal performance. Concern-
ing software functions, Python was used for both the
programming language and the integrated development
environment (IDE).

3.2. Implementation technique

At first, we used the KMeans algorithm on the whole
dataset where we got an output of different clusters
indicating fraudulent and non-fraudulent transactions
which were differentiated by colors. Later, we sampled
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the dataset into 10000 data points which includes all
492 fraudulent transactions, and applied the KMeans
algorithm with a ‘k’ value of 5 which indicates the
fraudulent transaction percentage in each cluster. Then
we applied the same algorithm to 1000 data points in
which we got the same output. During the process
of analysis, a certain level of bias was found. This
inference made us take a different approach toward
data sampling and later implemented strategies like
oversampling, under-sampling, and SMOTE for a fair
sampled dataset. subsubsectionData pre-processing
We begin by acquiring and preprocessing the dataset,
ensuring its quality, consistency, and suitability for
analysis. Import all the necessary packages and load
the dataset. We check for missing values in the dataset
and use the info() function to determine the structure
of the dataset, identifying missing values and deciding
how to handle them in your analysis.
The dataset exhibits strong data integrity, with each
column containing 284,807 non-null entries, ensuring
there are no missing values. This completeness is
critical for the effective utilization of all features with-
out the need for imputation or the removal of rows or
columns. Examining the data types reveals that most
columns are of type float64, which is expected since
the features (V1 to V28) result from a PCA transfor-
mation, representing continuous variables. Principal
component analysis (PCA) reduces the number of di-
mensions in large datasets to principal components that
retain most of the original information. It does this
by transforming potentially correlated variables into a
smaller set of variables, called principal components
[11, 12, 13]. The Class column, categorizing entries
as fraud (1) or non-fraud (0), is of type int64. The
dataset’s memory usage stands at 67.4 MB, indicating
it is relatively large but manageable within typical
modern computing resources. Understanding memory
usage is vital for optimizing performance, especially
when considering scaling up or deploying models.
Performing an initial data check using 𝑚𝑎𝑖𝑛𝑑 𝑓 .𝑖𝑛 𝑓 𝑜()
is a fundamental first step in any data analysis work-
flow. This check provides a quick overview of the
dataset’s structure and quality, helping to identify any
immediate issues such as missing values or incorrect

data types. Confirming the absence of missing values
and understanding the data types allows for confident
progression to subsequent preprocessing steps, such
as scaling numerical features and addressing the class
imbalance. Moreover, recognizing that all features are
numerical simplifies feature engineering, enabling the
direct application of scaling techniques and the consid-
eration of all features for modeling without requiring
additional transformations.

3.2.1. Data Exploration
The Data Frame initially displays the counts of each
class, where the Class column is relabelled as "Non-
Fraudulent" and "Fraudulent". The dataset comprises
284,315 non-fraudulent transactions and 492 fraudu-
lent transactions, showcasing a significant class imbal-
ance with approximately 0.17% representing fraudulent
transactions [2].
Further analysis involves calculating descriptive statis-
tics for transaction amounts in both categories. For
fraudulent transactions, the count is 492, with a mean
of 122.21 and a standard deviation of 256.68. The
range spans from 0.00 to 2125.87, with quartiles po-
sitioned at 1.00 (25th percentile), 9.25 (median), and
105.89 (75th percentile). Conversely, non-fraudulent
transactions amount to 284,315, with a mean of 88.29
and a standard deviation of 250.11. The transaction
range mirrors that of fraudulent transactions, from 0.00
to 25, 691.16, with quartiles distributed at 5.65, 22.00,
and 77.05.
These statistics unveil the variability in transaction
amounts for both classes. Despite fraudulent trans-
actions having a higher mean (122.21) compared to
non-fraudulent ones (88.29), both exhibit significant
dispersion. Quartile analysis further elucidates the
distribution of transaction amounts within each class.

3.2.2. Data Sampling
Since credit card fraud data is imbalanced due to the
number of non-fraudulent transactions exceeding the
number of fraudulent transactions; we used techniques
such as oversampling and undersampling or methods
that can handle the algorithm’s unequal classes.
Oversampling is used when the amount of data col-
lected is insufficient. The most popular technique
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is SMOTE (Synthetic Minority Oversampling Tech-
nique), which creates a synthetic sample from randomly
occurring samples in a minority class[14, 15, 16].
SMOTE (Synthetic Minority Class Oversampling
Technique) creates a new instance of the minority
class by creating a synthetic instance concatenated
from the minority class instance[17, 18, 19]. It not
only reiterates existing minority themes; instead, it
creates new situations based on the characteristics of
minorities. SMOTE works by selecting a minority
class and its nearest neighbors and then creating new
conditions along the line segment connecting neigh-
bors in a particular location. By doing this, SMOTE
effectively connects minority classes by creating syn-
thetic data that is similar but not identical to existing
minority classes. Solving the class uncertainty prob-
lem can improve the performance of machine learning
models trained on heterogeneous data[20, 21].
Undersampling is a technique used in machine learn-
ing to solve class inequality problems where one class
(usually a minority class) is less represented than other
classes. In case of undersampling, you reduce the num-
ber of samples in the overrepresented class to equalize
the class distribution. When we repeat the samples
with changes, we are essentially creating new synthetic
data points by combining the data in the new paper by
selectively selecting and copying the samples of the
existing minorities and comparing the data points of
the existing minorities. This process aims to equalize
the class distribution by reducing the number of classes
to fit the majority of classes[16, 18, 21].

3.2.3. Distance Metrics
We use distance metrics to assess the degree of similar-
ity between data points and illustrate how this concept
is essential to perform clustering tasks in machine
learning. Since the dataset is passed through a k-means
clustering model, we determine the number of clusters
individually with the help of distance metrics. We
use three different distance metrics: the Euclidean
distance, the Manhattan distance, and the Minkowski
distance each with its own characteristics and use cases.
These metrics are used to get the within-cluster sum
of squares (WCSS) for each number of clusters which

helps in finding the correct number of clusters i.e.,
elbow point, where the rate of decrease in WCSS sig-
nificantly decreases [22, 23, 24, 25].
Minkowski Distance
The Minkowski Distance is a very generalized distance
metric. By ‘generalized’ we are referring to the fact
that the Minkowski Distance formula to calculate the
distance between two points can be manipulated for
calculating it in different ways [26, 27].

𝐷𝑖𝑠𝑡𝑋𝑌 =

(
𝑑∑︁
𝑘=1

|𝑋𝑖𝑘 − 𝑋 𝑗𝑘 |
1
𝑝

) 𝑝
By setting p =1, we get the Manhattan Distance p=2,
we get Euclidean Distance [25]. Manhattan Distance
The Manhattan distance calculates the absolute differ-
ences between two objects’ coordinates [28, 29]. We
can manipulate the Minkowski Distance formula as
mentioned above to calculate the Manhattan distance
by setting p = 1,[30, 31]

𝐷𝑖𝑠𝑡𝑋𝑌 = |𝑋𝑖𝑘 − 𝑋 𝑗𝑘 |

Euclidean Distance
The Euclidean distance is used by the k-means clus-
tering algorithm to gauge how similar two objects are
to one another [22, 32]. It is also one of the most
commonly used distance metrics [33]. We can use the
Minkowski Distance formula and set p =2, to be able
to calculate the Euclidean Distance [33, 34].

𝐷𝑖𝑠𝑡𝑋𝑌 =

√√
𝑚∑︁
𝑘=1

(
𝑋𝑖𝑘 − 𝑋 𝑗𝑘

)2

Elbow Method
The Elbow Method is a heuristic used in cluster analy-
sis to count the number of clusters in a given data set.
Choosing the elbow of the curve to represent the num-
ber of clusters to use involves plotting the explained
variation as a function of the number of clusters. The
number of principal components to describe a data
set, for example, or the number of parameters in other
data-driven models can be determined using the same
process [35, 36, 37].
First, we calculate the number of clusters for the orig-
inal pre-processed data using the Euclidean distance.
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We use the same data and get the number of clusters
using the Manhattan distance and Minkowski distance.
Similarly, we use the distance metrics for the undersam-
pled, oversampled, and SMOTE datasets and observe
that regardless of the undersampling, oversampling,
or SMOTE, each distance metric correctly identifies
the number of clusters that represent the optimal trade-
off between model complexity and clustering quality.
These evaluations help in understanding the variance
present in the data to improve the performance of the
model across different sampling techniques [38, 39].

3.2.4. Algorithm
K-Means: The K-Means algorithm works iteratively
to divide the dataset into K pre-defined unique, non-
overlapping subgroups, or clusters so that each data
point is a member of only one group. The goal is to
maintain as much distance between the clusters and as
much similarity between the intra-cluster data points
as feasible [40, 41, 42]. The process involves grouping
data points into clusters so that the total squared dis-
tance between the cluster’s centroid—the arithmetic
mean of all the data points in that cluster—is as small
as possible. The homogeneity (similarity) of data
points within a cluster increases with decreasing varia-
tion within the cluster[37, 43, 44, 45]. The objective
function is given by,

𝐽 =

𝑚∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑤𝑖𝑘 | | (𝑥𝑖 − 𝜇𝑘 | |2

The available centroids are used to provide data points
for clustering to obtain the best centroids. Select cen-
troids or cluster key points based on the data points
already assigned to the cluster [37, 46, 47, 48]. We then
use histograms to show the distribution of the group of
data. We try to show a visualization that gives us an
idea about the percentage of fraud in each group after
using the algorithm. We then use the same integration
process as before, which is created from oversampled,
undersampled, and SMOTE datasets [15, 16, 17].
Initially, the necessary libraries are imported, including
the implementation of KMeans from scikit-learn. The
number of clusters is set based on the comparative
analysis of the distance metrics where the Euclidean

Distance gave the k values as 9, 3, 3, and 3 for the
original, oversampled, undersampled, and SMOTE
datasets respectively, represented by the n_clust vari-
able. Next, the KMeans object is initialized with this
parameter and n_init is set to 10 to ensure robust cen-
troid initialization. The model is then fitted to the
dataset represented by df_features and KMeans is used
to assign labels to all data points based on similarity
[49, 50]. This set of articles is stored in a different
tag. Finally, a histogram is created to visualize the
distribution of data points into groups, providing an
understanding of how data are normally grouped based
on their characteristics. This unsupervised clustering
approach will help understand the underlying structure
in a dataset, facilitating analysis or subsequent machine
learning studies.

4. Results and Analysis

The results obtained from the project focus on the
percentage of distinct types of fraud within each
cluster for the different datasets and also the number of
clusters best suited for the model with the datasets. We
used 3 sampling techniques after pre-processing the
data and analyzed the graph output about the number
of clusters (‘k’) which is best suited for the model.
In the first series of experiments, we applied the
distance metrics to the original pre-processed data.
We used the elbow method with 3 different distance
metrics on the dataset and analyzed it to get the
best value of (‘k’) for the model. The graph in
figure 1, shows that the within-cluster sum of squares
(WCSS) decreases significantly up to 6 or 7 clusters,
and the rate of decrease becomes less beyond this
point. This suggests that the optimal number of
clusters (k) is either 6, 7, or 8, as adding more
clusters beyond this range does not significantly
reduce the WCSS. Therefore, for the normal dataset,
choosing k as 6, 7, or 8 provides a good balance
between model complexity and clustering quality.
The elbow point in figure 2 appears around k=8 or 9
clusters, indicating a stabilization in the WCSS. This
implies that the optimal number of clusters (k) for
the K-means model is 8 or 9. These values provide a
reasonable compromise between detailed clustering
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Figure 1: Elbow Method for K-Means Clustering using
Euclidean Distance for Original Data

Figure 2: Elbow Method for K-Means Clustering using
Manhattan Distance for Original Data

and computational efficiency. In figure 3, the graph
indicates that the WCSS stabilizes at around 7, 8, or
9 clusters. Thus, the optimal number of clusters (k)
is 7, 8, or 9. These values ensure a good fit for the
dataset without excessive computational load. Now,
in the second series of experiments, we used the
oversampled dataset with the same 3 distance metrics
and analyzed it to get the best value of (‘k’) for the
model. The graph in figure 4, shows stabilization
at around 7, 8, or 9 clusters. Therefore, the optimal
number of clusters (k) for the K-means model is 7, 8, or
9. These cluster numbers help capture the variability
in the oversampled data while making the model less
complex. However, in figure 5, the elbow point occurs
around 6, 7, or 8 clusters. Consequently, the optimal
number of clusters (k) is 6, 7, or 8. This range helps

Figure 3: Elbow Method for K-Means Clustering using
Minkowski Distance for Original Data

Figure 4: Elbow Method for K-Means Clustering using
Euclidean Distance for Over sampled Data

the model to work on oversampled datasets efficiently.
The graph in figure 10, shows stabilization around 8

or 9 clusters, suggesting these as the optimal number
of clusters (k). This range efficiently captures the
variations in the SMOTE dataset. The WCSS in
figure 6, stabilizes at around 7 or 8 clusters. Therefore,
the optimal number of clusters (k) for the K-means
model in this case is 7 or 8. This provides a balanced
approach to clustering the oversampled data.
Third experimentation series takes the undersampled
dataset with the same 3 distance metrics and analyzes
it to get the best value of (‘k’) for the model. The
elbow point in figure 7, is evident around 8 or 9
clusters, indicating these as the optimal number of
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Figure 5: Elbow Method for K-Means Clustering using
Manhattan Distance for Oversampled Data

Figure 6: Elbow Method for K-Means Clustering using
Minkowski Distance for Oversampled Data

Figure 7: Elbow Method for K-Means Clustering using
Euclidean Distance for Undersampled Data

Figure 8: Elbow Method for K-Means Clustering using
Manhattan Distance for Undersampled Data

Figure 9: Elbow Method for K-Means Clustering using
Minkowski Distance for Undersampled Data

clusters (k). This choice effectively helps in making
correct inferences from the undersampled dataset.

The graph drawn in figure 8, indicates stabilization
around 7 or 8 clusters. Thus, the optimal number of
clusters (k) is 7 or 8, providing a detailed yet manage-
able clustering of the undersampled data.
The WCSS in figure 9, stabilizes at around 7 or 8 clus-
ters. Consequently, the optimal number of clusters (k)
is 7 or 8, balancing detail and making it less complex
for the undersampled dataset.
At last, we used the SMOTE dataset with the same
3 distance metrics and analyzed to get the best value
of (‘k’) for the model, The elbow point in figure 11,
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Figure 10: Elbow Method for K-Means Clustering using
Euclidean Distance for SMOTE Data

Figure 11: Elbow Method for K-Means Clustering using
Manhattan Distance for SMOTE Data

Figure 12: Elbow Method for K-Means Clustering using
Minkowski Distance for SMOTE Data

Figure 13: Clusters from the Original dataset

Figure 14: Clusters from the Oversampled dataset

Figure 15: Clusters from the Undersampled dataset

appears at around 7 or 8 clusters. Thus, the optimal
number of clusters (k) is 7 or 8, effectively clustering
the SMOTE dataset. The WCSS in figure 12, stabilizes
around 7 or 8 clusters. Therefore, the optimal num-
ber of clusters (k) is 7 or 8, ensuring a good balance
between model complexity and performance for the
SMOTE dataset.
K-Means Clustering result analysis on differently
sampled datasets:
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Figure 16: Clusters from the SMOTE dataset

After a thorough analysis using the K-Means clustering
algorithm on four differently sampled datasets, namely,
the original dataset, the oversampled dataset, the under-
sampled dataset, and the SMOTE dataset we were able
to visualize the following histograms and were able to
infer and come up with a very crucial assumption on
the data that we used. The above histogram in figure 13,
represents a total of 9 clusters for the original dataset,
where each cluster contains a certain percentage of
fraud data points, depicted in table 1.
The oversampled dataset consists of only three clusters
where the K-means algorithm could determine only
three clusters, as shown in table 2. A key point to
notice here is that two separate clusters are completely
consisting of fraud data points. The undersampled

Table 2: Fraudulent cases distributed over various clusters
in unsampled dataset

Cluster Fraud
0 0.2%
1 0.0%
2 0.4%
3 0.4%
4 0.0%
5 3.5%
6 0.0%
7 1.0%
8 0.1%

dataset was also clustered into 3 clusters, mentioned
in table 3. (Note: Similar observation was made in
the oversampled dataset.) The SMOTE dataset is

Table 3: Fraudulent cases distributed over various clusters
in Oversampled dataset

Cluster Fraud
0 18%
1 100%
2 100%

Table 4: Fraudulent cases distributed over various clusters
in Undersampled dataset

Cluster Fraud
0 100%
1 18%
2 100%

Table 5: Fraudulent cases distributed over various clusters
in SMOTE dataset

Cluster Fraud
0 18.2%
1 100%
2 100%

clustered into three clusters as well, where we could
observe the clusters as mentioned in table 4.

5. Discussion

The results based on the comparative study of the three
distance metrics i.e. Euclidean Distance, Manhattan
Distance, and Minkowski Distance, as well as a suffi-
cient amount of study in this field, led to the conclusion
that the best distance metric to be used for K-Means
clustering algorithm is the Euclidean Distance Metric,
which finds the optimal k value using elbow method,
this being true for all the differently sampled datasets.
Thus, the values given by the Euclidean Distance Met-
ric were taken to get the optimal cluster values for each
dataset.
The comparisons in our study emphasize how impor-
tant it is to choose the right clustering algorithms and
distance measures when detecting credit card fraud.
The study demonstrates the resilience of the Euclidean
distance metric in producing reliable clustering find-
ings by using Euclidean, Manhattan, and Minkowski
distances across various sampled datasets. This result
confirms that it works well with high-dimensional and
PCA-transformed datasets.
The study offers important insights into how sampling
strategies can affect clustering results because of its
focus on correcting class imbalance using strategies
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including oversampling, undersampling, and SMOTE.
The division of fraudulent transactions into discrete
clusters, which raises the possibility of differences
in fraudulent behavior patterns, is especially notable.
This finding highlights the necessity for more thorough
research into the traits of many fraudulent transactions
and poses significant queries on the complexity of
fraud kinds.
The study notes limitations such as the lack of trans-
parency in the dataset and the lack of detailed fraud
labels, which limits the capacity to classify fraud into
particular categories, even if it has produced encour-
aging results. The availability of diverse, high-quality
datasets that capture the intricacy of actual fraud situ-
ations is a larger problem in fraud detection research,
highlighted by this constraint.

6. Conclusion

Building on the findings from our work, this study
demonstrates that, among all the sampling procedures
examined, the Euclidean distance metric is the most
dependable option for K-Means clustering. Clustering
quality was consistently optimized by the measure, as
evidenced by the clusters created from the original,
oversampled, undersampled, and SMOTE datasets.
An important clue to the dataset’s possible diversity
in fraud types—an area ready for more research—is
provided by identifying discrete clusters in the sampled
datasets containing 100% fake data points. Although
the study effectively determines the best clustering
strategy for detecting credit card fraud, it is limited
by the dataset’s shortcomings, especially concerning
diversity and granularity.
Thus, our study provides valuable direction for
future research on detecting fraudulent credit card
transactions. Expanding the dataset to include more
specific information on fraudulent transactions would
be one crucial direction for further research. Future
research may significantly contribute to identifying
more suitable clustering techniques and gaining a
deeper insight into various fraud types using such data.
Furthermore, the sampling strategies discussed here
may be used on other datasets to check for comparable

trends, especially concerning the clustering of fraudu-
lent transactions. These beneficial developments have
the potential to greatly enhance fraud detection while
still being useful and accessible to both researchers
and practitioners.
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