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ABSTRACT:
Background:In graph theory, the prism graph is a type of graph that is characterised by having the structure of a
prism as its underlying framework. The notion of a resolving set and that of metric dimension for a graph of a prism is
important in uniquely identifying the vertices within a prism graph. For a non-trivial connected graph Γ𝑟 = Γ𝑟 (𝑉, 𝐸),
an ordered subset 𝑈 of vertices 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑠 any pair of different vertices 𝑦1, 𝑦2 ∈ 𝑉 , if 𝑑 (𝑣, 𝑦1) ≠ 𝑑 (𝑣, 𝑦2) for some
𝑣 ∈ 𝑈. Such a set𝑈 is said to be a resolving set for Γ𝑟 and the smallest cardinality of𝑈 is called the 𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

of Γ𝑟 .
Purpose: The purpose of this article is to determine the notion of resolving sets and their corresponding metric
dimensions for two complex families of planar graphs obtained by joining 𝑚−copies of the prism graph on known
families of convex polytope graphs.
Methods:The methods used are purely theoretical, based on mathematical reasoning and established definitions related
to graph theory.
Results: In this article, we have determined successfully the resolving set and metric dimension for two specific
complex families of planar graphs, denoted by L𝑛 and M𝑛, constructed using 𝑚−copies of a prism graph. These
findings contribute to our understanding of these concepts within graph theory.
Conclusions: This research indicates the importance of studying resolving sets and metric dimensions in various graph
structures, particularly those derived from multiple copies of the prism graph connected through known families of
convex polytope graphs. This work may inspire further investigations into similar graph families or other applications
of these concepts in different areas of mathematics and computer science.
Keywords: Metric dimension, independent set, basis set, convex polytope, prism graphs
2000 Mathematics Subject Classification: 05C12

1. Introduction

It has been observed that the graph of an 𝑘-gonal
(where 𝑘 ∈ N and 𝑘 ≥ 3) prism exhibits a distinct
pattern in terms of its vertices and edges. Specifically,
it has been determined that an 𝑘-gonal prism possesses
2𝑘 vertices and 3𝑘 edges. This finding provides
valuable insight into the structural properties of
𝑘-gonal prisms and contributes to our understanding of
their geometric characteristics. The graphs in question
exhibit regularity and possess a cubic structure. Prism
graphs possess the property of vertex-transitivity
due to the presence of symmetries that map each

vertex to every other vertex. As polyhedral graphs,
they exhibit the property of being 3-vertex-connected
planar graphs. It has been observed that every prism
graph, which is a specific type of graph formed
by connecting two copies of a cycle graph with
corresponding vertices, possesses a Hamiltonian cycle.
A Hamiltonian cycle is a cycle that visits each vertex
exactly once. Researchers have extensively studied this
property and proven its validity for all prism graphs [1].

Throughout this article, all graphs under consideration
are connected, non-trivial, undirected, and simple. Let
Γ𝑟 = (𝑉, 𝐸) be a graph with 𝑉 (Γ𝑟 ) and 𝐸 (Γ𝑟 ) as its
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vertex and edge set respectively. The shortest length
path between two distinct vertices 𝑦1 and 𝑦2 in 𝑉 (Γ𝑟 ),
is referred to as the distance (𝑑 (𝑦1, 𝑦2)) between 𝑦1

and 𝑦2 in Γ𝑟 . The number of distinct edges incident on
a vertex 𝑦 in Γ𝑟 is known as the degree of 𝑣 (denoted by
𝑑𝑦). Two vertices 𝑦1 and 𝑦2 in Γ𝑟 are said to resolved
by a vertex 𝑦, if 𝑑 (𝑦, 𝑦1) ≠ 𝑑 (𝑦, 𝑦2) in Γ𝑟 . Then, a
subset 𝑈 ⊆ 𝑉 (Γ𝑟 ) with this property, i.e., every pair
of unequal vertices in Γ𝑟 can be resolved by at least
one member of 𝑈, is said to be a resolving set (RS)
for Γ𝑟 . The smallest cardinality set 𝑈 with resolving
characteristic is called the metric basis (MB) for Γ𝑟 ,
and the MB set cardinality is the metric dimension
(MD) for Γ𝑟 , represented by 𝑑𝑖𝑚(Γ𝑟 ) [2, 3].

For a subset 𝑈 = {𝑦1, 𝑦2, 𝑦3, ..., 𝑦𝑠} of distinct or-
dered vertices in 𝑉 (Γ𝑟 ), the unique 𝑠-length tu-
ple code for each 𝑞 ∈ 𝑉 (Γ𝑟 ) is given as follows
𝜁 (𝑞 |𝑈) = (𝑑 (𝑞, 𝑦1), 𝑑 (𝑞, 𝑦2),
𝑑 (𝑞, 𝑦3), ..., 𝑑 (𝑞, 𝑦𝑠)). Using this fact, the subset 𝑈 is
a RS for Γ𝑟 , if 𝜁 (𝑦1 |𝑈) ≠ 𝜁 (𝑦2 |𝑈), for every pair of
different vertices 𝑦1, 𝑦2 ∈ 𝑉 (Γ𝑟 ). Next, a subset 𝑈 in
𝑉 (Γ𝑟 ) with distinct vertices is said to be a resolving
independent set for Γ𝑟 , if it is (i) independent set as
well as (ii) a RS in Γ𝑟 . A proper subset of a RS is
not necessarily a RS, while a superset of every RS is
always a RS [4].

Figure 1: Graph Γ∗

To understand the concept of RS and MD, let us con-
sider a graph Γ∗ on 5 vertices and 7 edges, as shown in
Fig. 1. To find the metric dimension of Γ∗, we suppose
that𝑈1 = {𝑣1, 𝑣4} (red color vertices in Γ∗). Next, met-
ric codes for each vertex in Γ∗ with respect to𝑈1 are as
follows: 𝜁 (𝑣1 |𝑈1) = (0, 1), 𝜁 (𝑣2 |𝑈1) = (1, 2),

𝜁 (𝑣3 |𝑈1) = (2, 2), 𝜁 (𝑣4 |𝑈1) = (1, 0), and
𝜁 (𝑣5 |𝑈1) = (1, 1). From this, we find that the
metric codes for all the vertices in Γ∗ corresponding
to the set 𝑈1 are unique, and so we say that 𝑈1 is
a resolving set for Γ∗. Also, 𝑈1 is the minimum
resolving set for Γ∗, as the cardinality of 𝑈1 is 2 [5].
Hence, we have concluded that 𝑑𝑖𝑚(Γ∗) = 2.

Slater [3] and Harary & Melter [2] independently
introduced the concept of MD of a graph in 1970s.
There is a wide range of literature available on MD
that addresses both theoretical and practical aspects.
The MD has appeared in various areas including
combinatorial optimization, sonar, pharmaceutical
chemistry, robot navigation, graph isomorphism
testing, and many more see [6, 7, 8, 9, 10] and
references therein.

The computation of MD for distinct graph families,
is always a challenging task because deciding and se-
lecting of a landmark (resolving) vertices in minimum
numbers is not that easy due to the complexity and
scalability of the considered graph network. Further,
the notion of MD was extended as well as investigated
by eminent researchers from time to time and named
them as the variants of MD [11]. Several authors have
studied MD and its related variants for several distinct
graphs as well as for various other graph-theoretic
aspects, for instance prism graph, path graph, complete
graph, cycle graph, cycle graph with chords, antiprism
graph, several ladder graphs (pentagonal, heptagonal,
etc), convex polytope graph, wheel graph, tadpole
graph, kayak paddle graph, and numerous planar and
chemical graphs [4, 6, 7, 9, 10, 12, 13]. Even though
after investigating these notions for the large number of
graph families, there are still many families for which
these notions are not investigated to date.
In this paper, two planar graph families, viz., L𝑛 and
M𝑛 has been constructed, which are obtained by taking
𝑚-copies (𝑞 = 𝑚) of the prism graph on the two known
convex polytope graphs 𝑅𝑛 [9] and𝑈𝑛 [7], respectively.
For these so obtained graphs, we investigate their mini-
mal MB sets and finally obtain their MD. To carry out
these results, we need the following result:
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Proposition 1.1. [5] For a connected graph Γ𝑟 with
metric dimension two i.e., the metric basis 𝑈 for Γ𝑟

has cardinality two, and say 𝑈 = {𝑦1, 𝑦2}. Then, the
following three points for Γ𝑟 are true:

1. Always shortest unique path 𝑃 between 𝑦1 and
𝑦2 exist,

2. 𝑑𝑦1 and 𝑑𝑦2 is at most 3, and

3. The 𝑑𝑣 is at most 5, for any 𝑣 ∈ 𝑃.

The following paper is structured as follows: In Section
2, we consider an infinite family of convex polytope
L𝑛 and find its minimum RS with its respective MD.
In Section 3, we consider an infinite family of convex
polytope M𝑛 and find its minimum RS with its respec-
tive MD. Finally, the conclusion and future scope of
the manuscript is presented.

2. Minimum Vertex Resolving Number of L𝑛

In this section, we investigate some of the basic
properties and the MD of a planar graph L𝑛. The
graph L𝑛 consists of 𝑛(𝑞 + 3) vertices and 𝑛(2𝑞 + 5)
edges (see Fig.2). The sets containing vertices
and edges for planar graph L𝑛 are denoted by
𝑉 (L𝑛) and 𝐸 (L𝑛) respectively, where 𝐸 (L𝑛) =

{ 𝑗𝛼 𝑗𝛼+1, 𝑗𝛼𝑘𝛼, 𝑘𝛼 𝑗𝛼+1, 𝑘𝛼𝑙𝛼, 𝑙𝛼𝑚
1
𝛼, 𝑚

1
𝛼𝑙𝛼+1,

𝑚𝑠
𝛼𝑚

𝑠
𝛼+1 : 1 ≤ 𝛼 ≤ 𝑛, 1 ≤ 𝑠 ≤ 𝑞} ∪ {𝑚𝑠

𝛼𝑚
𝑠+1
𝛼 :

1 ≤ 𝛼 ≤ 𝑛, 1 ≤ 𝑠 ≤ 𝑞 − 1} and
𝑉 (L𝑛) = { 𝑗𝛼, 𝑘𝛼, 𝑙𝛼, 𝑚𝑠

𝛼 : 1 ≤ 𝛼 ≤ 𝑛, 1 ≤ 𝑠 ≤ 𝑞}.

We call vertices { 𝑗𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, as 𝑗-cycle vertices
in L𝑛, the vertices {𝑘𝛼, 𝑙𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, as inner
vertices in L𝑛, and the vertices {𝑚𝑠

𝛼 : 1 ≤ 𝛼 ≤ 𝑛, 1 ≤
𝑠 ≤ 𝑞}, as outer vertices in L𝑛. In the following result,
we investigate the MD of L𝑛.

Theorem 2.1. 𝑑𝑖𝑚(L𝑛) = 3, where 𝑛 ≥ 6 is a positive
integer.

Proof. Now, the following cases, which depend on the
natural 𝑛, can be employed to investigate this result.

Case(I) 𝑛 ≡ 0(𝑚𝑜𝑑 2).
We set 𝑛 = 2𝑦; 𝑦 ∈ Z+ and 𝑦 ≥ 3. Let 𝑈 =

{ 𝑗2, 𝑗𝑦+1, 𝑗𝑛} ⊂ 𝑉 (L𝑛). Next, each vertex of L𝑛 has
given metric coordinate corresponding to the taken set

𝑈.
For vertices over 𝑗-cycle, i.e., { 𝑗𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the
metric co-ordinates are

𝜁 ( 𝑗𝛼 |𝑈) =
(1, 𝑦, 𝛼), 𝛼 = 1;
(𝛼 − 2, 𝑦 − 𝛼 + 1, 𝛼) 2 ≤ 𝛼 ≤ 𝑦;
(𝛼 − 2, 𝑦 − 𝛼 + 1, 2𝑦 − 𝛼) 𝛼 = 𝑦 + 1;
(2𝑦 − 𝛼 + 2, 𝛼 − 𝑦 − 1, 2𝑦 − 𝛼) 𝑦 + 2 ≤ 𝛼 ≤ 2𝑦.

For the vertices {𝑘𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the metric co-
ordinates are

𝜁 (𝑘𝛼 |𝑈) =

(1, 𝑦 − 𝛼 + 1, 𝛼 + 1) 𝛼 = 1;
(𝛼 − 1, 𝑦 − 𝛼 + 1, 𝛼 + 1) 2 ≤ 𝛼 ≤ 𝑦 − 1;
(𝛼 − 1, 𝑦 − 𝛼 + 1, 2𝑦 − 𝛼) 𝛼 = 𝑦;
(𝛼 − 1, 𝛼 − 𝑦, 2𝑦 − 𝛼) 𝛼 = 𝑦 + 1;
(2𝑦 − 𝛼 + 2, 𝛼 − 𝑦, 2𝑦 − 𝛼) 𝑦 + 2 ≤ 𝛼 ≤ 2𝑦 − 1;
(2𝑦 − 𝛼 + 2, 𝛼 − 𝑦, 1) 𝛼 = 2𝑦.

For the vertices {𝑙𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the metric co-
ordinates are 𝜁 (𝑙𝛼 |𝑈) = 𝜁 (𝑘𝛼 |𝑈) + (1, 1, 1) for 1 ≤
𝛼 ≤ 𝑛. Next, for the vertices {𝑚1

𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the
metric co-ordinates are

𝜁 (𝑚1
𝛼 |𝑈) =

(3, 𝑦 − 𝛼 + 2, 𝛼 + 3) 𝛼 = 1;
(𝛼 + 1, 𝑦 − 𝛼 + 2, 𝛼 + 3) 2 ≤ 𝛼 ≤ 𝑦 − 1;
(𝛼 + 1, 3, 2𝑦 − 𝛼 + 1) 𝛼 = 𝑦;
(2𝑦 − 𝛼 + 3, 𝛼 − 𝑦 + 2, 2𝑦 − 𝛼 + 1) 𝑦 + 1 ≤ 𝛼

≤ 2𝑦 − 2;
(2𝑦 − 𝛼 + 3, 𝛼 − 𝑦 + 2, 3) 2𝑦 − 1 ≤ 𝛼 ≤ 2𝑦.

Finally, for the vertices {𝑚𝑠
𝛼 : 1 ≤ 𝛼 ≤

𝑛, 2 ≤ 𝑠 ≤ 𝑞}, the co-ordinates are
𝜁 (𝑚𝑠

𝛼 |𝑈) = 𝜁 (𝑚1
𝛼 |𝑈) + (𝑠 − 1, 𝑠 − 1, 𝑠 − 1) for

1 ≤ 𝛼 ≤ 𝑛. Next, these codes for all vertices in L𝑛 are
unique and distinct from one and an other in at least
one co-ordinate, which results in 𝑑𝑖𝑚(L𝑛) ≤ 3.

Now, for reverse inequality i.e., 𝑑𝑖𝑚(L𝑛) ≥ 3, we show
that no set𝑈 with |𝑈 | = 2, form a RS for L𝑛. Assuming
𝑑𝑖𝑚(L𝑛) = 2 (on contrary). Using proposition 1, we
have following to discuss for RS 𝑈 with |𝑈 | = 2 in L𝑛:

1. Let 𝑈 = {𝑘1, 𝑘𝑔}, 𝑘𝑔 (2 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗𝑛 |𝑈) = 𝜁 (𝑘𝑛 |𝑈), for 2 ≤ 𝑔 ≤ 𝑦 − 1,
𝜁 (𝑙2 |𝑈) = 𝜁 (𝑘𝑛−1 |𝑈), when 𝑔 = 𝑦, and
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Figure 2: The Graph L𝑛

𝜁 ( 𝑗2 |𝑈) = 𝜁 ( 𝑗1 |𝑈), when 𝑔 = 𝑦 + 1, a con-
tradiction.

2. Let 𝑈 = {𝑙1, 𝑙𝑔}, 𝑙𝑔 (2 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗𝑛 |𝑈) = 𝜁 (𝑘𝑛 |𝑈), for 2 ≤ 𝑔 ≤ 𝑦 − 1,
𝜁 (𝑝3 |𝑈) = 𝜁 (𝑚2

2 |𝑈), when 𝑔 = 𝑦, and
𝜁 ( 𝑗2 |𝑈) = 𝜁 ( 𝑗1 |𝑈), when 𝑔 = 𝑦 + 1, a con-
tradiction.

3. Let 𝑈 = {𝑚𝑞

1 , 𝑚
𝑞
𝑔}, 𝑚𝑞

𝑔 (2 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 (𝑚𝑞−1

1 |𝑈) = 𝜁 (𝑚𝑞
𝑛 |𝑈), for 2 ≤ 𝑔 ≤ 𝑦, and

𝜁 (𝑚𝑞

2 |𝑈) = 𝜁 (𝑚𝑞
𝑛 |𝑈), when 𝑔 = 𝑦 + 1, a contra-

diction.

4. Let 𝑈 = {𝑘1, 𝑙𝑔}, 𝑙𝑔 (1 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗𝑛 |𝑈) = 𝜁 (𝑘𝑛 |𝑈), for 1 ≤ 𝑔 ≤ 𝑦 − 1,
𝜁 (𝑚1

1 |𝑈) = 𝜁 (𝑝3 |𝑈), when 𝑔 = 𝑦, and
𝜁 ( 𝑗2 |𝑈) = 𝜁 ( 𝑗1 |𝑈), when 𝑔 = 𝑦 + 1, a con-
tradiction.

5. Let 𝑈 = {𝑘1, 𝑚
𝑞
𝑔}, 𝑚𝑞

𝑔 (1 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗1 |𝑈) = 𝜁 ( 𝑗2 |𝑈), for 𝑔 = 1, 𝜁 (𝑚1

𝑛 |𝑈) =

𝜁 (𝑘2 |𝑈), when 2 ≤ 𝑔 ≤ 𝑦, and 𝜁 (𝑚1
𝑦+1 |𝑈) =

𝜁 (𝑙𝑦+2 |𝑈), when 𝑔 = 𝑦 + 1, a contradiction.

6. Let 𝑈 = {𝑙1, 𝑚𝑞
𝑔}, 𝑚𝑞

𝑔 (1 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗1 |𝑈) = 𝜁 ( 𝑗2 |𝑈), for 𝑔 = 1, 𝜁 (𝑚1

𝑛−1 |𝑈) =

𝜁 ( 𝑗2 |𝑈), when 2 ≤ 𝑔 ≤ 𝑦 − 1, 𝜁 (𝑚1
𝑦 |𝑈) =

𝜁 (𝑚2
𝑦−1 |𝑈), when 𝑔 = 𝑦, and 𝜁 (𝑚1

𝑦+1 |𝑈) =

𝜁 (𝑚2
𝑦+2 |𝑈), when 𝑔 = 𝑦 + 1, a contradiction.

Thus, from this we have 𝑑𝑖𝑚(L𝑛) ≥ 3, implying that
𝑑𝑖𝑚(L𝑛) = 3, ∀ 𝑛 ≥ 6.

Case(II) 𝑛 ≡ 1(𝑚𝑜𝑑 2).

We set 𝑛 = 2𝑦 + 1; 𝑦 ∈ Z+ and 𝑦 ≥ 3. Let
𝑈 = { 𝑗2, 𝑗𝑦+1, 𝑗𝑛} ⊂ 𝑉 (L𝑛). Next, each vertex of L𝑛

has given metric coordinate corresponding to the taken
set 𝑈.

For vertices over 𝑗-cycle, i.e., { 𝑗𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the
metric co-ordinates are

𝜁 ( 𝑗𝛼 |𝑈) =

(1, 𝑦, 𝛼) 𝛼 = 1;
(𝛼 − 2, 𝑦 − 𝛼 + 1, 𝛼) 2 ≤ 𝛼 ≤ 𝑦;
(𝛼 − 2, 𝑦 − 𝛼 + 1, 2𝑦 − 𝛼 + 1) 𝛼 = 𝑦 + 1;
(𝛼 − 2, 𝛼 − 𝑦 − 1, 2𝑦 − 𝛼 + 1) 𝛼 = 𝑦 + 2;
(2𝑦 − 𝛼 + 3, 𝛼 − 𝑦 − 1, 2𝑦 − 𝛼 + 1) 𝑦 + 3 ≤ 𝛼

≤ 2𝑦 + 1.

For the vertices {𝑘𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the metric co-
ordinates are

𝜁 (𝑘𝛼 |𝑈) =

(1, 𝑦 − 𝛼 + 1, 𝛼 + 1) 𝛼 = 1;
(𝛼 − 1, 𝑦 − 𝛼 + 1, 𝛼 + 1) 2 ≤ 𝛼 ≤ 𝑦;
(𝛼 − 1, 𝛼 − 𝑦, 2𝑦 − 𝛼 + 1) 𝛼 = 𝑦 + 1;
(2𝑦 − 𝛼 + 3, 𝛼 − 𝑦, 2𝑦 − 𝛼 + 1) 𝑦 + 2 ≤ 𝛼 ≤ 2𝑦;
(2𝑦 − 𝛼 + 3, 𝛼 − 𝑦, 1) 𝛼 = 2𝑦 + 1.

For the vertices {𝑙𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the metric co-
ordinates are 𝜁 (𝑙𝛼 |𝑈) = 𝜁 (𝑘𝛼 |𝑈) + (1, 1, 1) for 1 ≤
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Figure 3: The Graph M𝑛

𝛼 ≤ 𝑛. Next, for the vertices {𝑚1
𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the

co-ordinates are

𝜁 (𝑚1
𝛼 |𝑈) =

(3, 𝑦 − 𝛼 + 2, 𝛼 + 3) 𝛼 = 1;
(𝛼 + 1, 𝑦 − 𝛼 + 2, 𝛼 + 3) 2 ≤ 𝛼 ≤ 𝑦 − 1;
(𝛼 + 1, 3, 2𝑦 − 𝛼 + 2) 𝛼 = 𝑦;
(2𝑦 − 𝛼 + 4, 𝛼 − 𝑦 + 2, 2𝑦 − 𝛼 + 2) 𝑦 + 2 ≤ 𝛼

≤ 2𝑦 − 1;
(2𝑦 − 𝛼 + 4, 𝛼 − 𝑦 + 2, 3) 𝛼 = 2𝑦;
(2𝑦 − 𝛼 + 4, 𝑦 + 2, 3) 𝛼 = 2𝑦 + 1.

Finally, for the vertices {𝑚𝑠
𝛼 : 1 ≤ 𝛼 ≤ 𝑛, 2 ≤ 𝑠 ≤ 𝑞},

the metric co-ordinates are 𝜁 (𝑚𝑠
𝛼 |𝑈) = 𝜁 (𝑚1

𝛼 |𝑈) +
(𝑠−1, 𝑠−1, 𝑠−1) for 1 ≤ 𝛼 ≤ 𝑛. Next, these codes for
all vertices in L𝑛 are unique and distinct from one and
an other in at least one co-ordinate, which results in
𝑑𝑖𝑚(L𝑛) ≤ 3. Assuming that 𝑑𝑖𝑚(L𝑛) = 2, then as in
Case (I), we have the same contradictions. Therefore,
we have 𝑑𝑖𝑚(L𝑛) = 3 as well in this case, which proofs
the theorem. □

Proposition 2.2. The resolving independent number
for L𝑛 is 3, ∀ 𝑛 ≥ 6.

Proof. For the proof, follow Theorem 2.1. □

3. Minimum Vertex Resolving Number of M𝑛

In this section, we investigate some of the basic
properties and the MD of a planar graph M𝑛 (see
Fig. 3). The graph M𝑛 consists of 𝑛(𝑞 + 4) ver-
tices and 𝑛(2𝑞 + 6) edges. The sets containing ver-
tices and edges for planar graph M𝑛 are denoted

by 𝑉 (M𝑛) and 𝐸 (M𝑛) respectively, where 𝐸 (M𝑛) =
{ 𝑗𝛼 𝑗𝛼+1, 𝑗𝛼𝑘𝛼, 𝑘𝛼𝑘𝛼+1, 𝑘𝛼𝑙𝛼, 𝑙𝛼𝑚𝛼,

𝑚𝛼𝑙𝛼+1, 𝑚𝛼𝑜
1
𝛼, 𝑜

𝑠
𝛼𝑜

𝑠
𝛼+1 : 1 ≤ 𝛼 ≤ 𝑛, 1 ≤ 𝑠 ≤

𝑞} ∪ {𝑜𝑠𝛼𝑜𝑠+1
𝛼 : 1 ≤ 𝛼 ≤ 𝑛, 1 ≤ 𝑠 ≤ 𝑞 − 1} and

𝑉 (M𝑛) = { 𝑗𝛼, 𝑘𝛼, 𝑙𝛼, 𝑚𝛼, 𝑜
𝑠
𝛼 : 1 ≤ 𝛼 ≤ 𝑛, 1 ≤ 𝑠 ≤

𝑞}.
We call vertices { 𝑗𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, as 𝑗-cycle vertices
in M𝑛, the vertices {𝑘𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, as 𝑘-cycle
vertices in M𝑛, the vertices {𝑙𝛼, 𝑚𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, as
𝑙𝑚-cycle vertices in M𝑛, and the vertices {𝑜𝑠𝛼 : 1 ≤
𝛼 ≤ 𝑛, 1 ≤ 𝑠 ≤ 𝑞} as outer vertices in M𝑛. In the
following result, we investigate the MD of M𝑛.

Theorem 3.1. 𝑑𝑖𝑚(M𝑛) = 3, where 𝑛 ≥ 6 is a positive
integer.

Proof. Now, the following cases, which depend on the
natural 𝑛, can be employed to investigate this result.

Case(I) 𝑛 ≡ 0(𝑚𝑜𝑑 2).
We set 𝑛 = 2𝑦; 𝑦 ∈ Z+ and 𝑦 ≥ 3. Let
𝑈 = { 𝑗2, 𝑗𝑦+1, 𝑗𝑛} ⊂ 𝑉 (M𝑛). Next, each vertex of M𝑛

has given metric coordinate corresponding to the taken
set 𝑈.
For vertices over 𝑗-cycle, i.e., { 𝑗𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the
metric co-ordinates are

𝜁 ( 𝑗𝛼 |𝑈) =
(1, 𝑦, 𝛼) 𝛼 = 1;
(𝛼 − 2, 𝑦 − 𝛼 + 1, 𝛼) 2 ≤ 𝛼 ≤ 𝑦;
(𝛼 − 2, 𝑦 − 𝛼 + 1, 2𝑦 − 𝛼) 𝛼 = 𝑦 + 1;
(2𝑦 − 𝛼 + 2, 𝛼 − 𝑦 − 1, 2𝑦 − 𝛼) 𝑦 + 2 ≤ 𝛼 ≤ 2𝑦.
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For the vertices {𝑘𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the metric co-
ordinates are 𝜁 (𝑘𝛼 |𝑈) = 𝜁 ( 𝑗𝛼 |𝑈) + (1, 1, 1) for 1 ≤
𝛼 ≤ 𝑛. Next, for the vertices {𝑙𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the
metric co-ordinates are 𝜁 (𝑙𝛼 |𝑈) = 𝜁 (𝑘𝛼 |𝑈) + (1, 1, 1)
for 1 ≤ 𝛼 ≤ 𝑛.
For the vertices {𝑚𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the metric co-
ordinates are

𝜁 (𝑚𝛼 |𝑈) =

(3, 𝑦 − 𝛼 + 3, 𝛼 + 3) 𝛼 = 1;
(𝛼 + 1, 𝑦 − 𝛼 + 3, 𝛼 + 3) 2 ≤ 𝛼 ≤ 𝑦 − 1;
(𝛼 + 1, 𝑦 − 𝛼 + 3, 2𝑦 − 𝛼 + 2) 𝛼 = 𝑦;
(𝛼 + 1, 𝛼 − 𝑦 + 2, 2𝑦 − 𝛼 + 2) 𝛼 = 𝑦 + 1;
(2𝑦 − 𝛼 + 4, 𝛼 − 𝑦 + 2, 2𝑦 − 𝛼 + 2) 𝑦 + 2 ≤ 𝛼

≤ 2𝑦 − 1;
(2𝑦 − 𝛼 + 4, 𝛼 − 𝑦 + 2, 3) 𝛼 = 2𝑦.

Finally, for the vertices {𝑜𝑠𝛼 : 1 ≤ 𝛼 ≤
𝑛, 1 ≤ 𝑠 ≤ 𝑞}, the metric co-ordinates are
𝜁 (𝑜𝑠𝛼 |𝑈) = 𝜁 (𝑚𝛼 |𝑈) + (𝑠, 𝑠, 𝑠) for 1 ≤ 𝛼 ≤ 𝑛.

Next, these codes for all vertices in M𝑛 are unique
and distinct from one and an other in at least one co-
ordinate, which results in 𝑑𝑖𝑚(M𝑛) ≤ 3. Now, for
reverse inequality i.e., 𝑑𝑖𝑚(M𝑛) ≥ 3, we show that
no set 𝑈 with |𝑈 | = 2, form a RS for M𝑛. Now, for
reverse inequality i.e., 𝑑𝑖𝑚(M𝑛) ≥ 3, we show that
no set 𝑈 with |𝑈 | = 2, form a RS for M𝑛. Assuming
𝑑𝑖𝑚(M𝑛) = 2 (on contrary). Using proposition 1, we
have following to discuss for RS𝑈 with |𝑈 | = 2 in M𝑛:

1. Let 𝑈 = {𝑘1, 𝑘𝑔}, 𝑘𝑔 (2 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗𝑛 |R) = 𝜁 (𝑘𝑛 |R), for 2 ≤ 𝑔 ≤ 𝑦 − 1;
𝜁 (𝑙2 |R) = 𝜁 (𝑘𝑛−1 |R), when 𝑔 = 𝑦; and
𝜁 ( 𝑗2 |R) = 𝜁 ( 𝑗1 |R), when 𝑔 = 𝑦 + 1, a con-
tradiction.

2. Let 𝑈 = {𝑙1, 𝑙𝑔}, 𝑙𝑔 (2 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗𝑛 |R) = 𝜁 (𝑘𝑛 |R), for 2 ≤ 𝑔 ≤ 𝑦 − 1;
𝜁 (𝑝3 |R) = 𝜁 (𝑚2

2 |R), when 𝑔 = 𝑦; and
𝜁 ( 𝑗2 |R) = 𝜁 ( 𝑗1 |R), when 𝑔 = 𝑦 + 1, a con-
tradiction.

3. Let 𝑈 = {𝑚𝑞

1 , 𝑚
𝑞
𝑔}, 𝑚𝑞

𝑔 (2 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 (𝑚𝑞−1

1 |R) = 𝜁 (𝑚𝑞
𝑛 |R), for 2 ≤ 𝑔 ≤ 𝑦; and

𝜁 (𝑚𝑞

2 |R) = 𝜁 (𝑚𝑞
𝑛 |R), when 𝑔 = 𝑦 + 1, a contra-

diction.

4. Let 𝑈 = {𝑘1, 𝑙𝑔}, 𝑙𝑔 (1 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗𝑛 |R) = 𝜁 (𝑘𝑛 |R), for 1 ≤ 𝑔 ≤ 𝑦 − 1;
𝜁 (𝑚1

1 |R) = 𝜁 (𝑝3 |R), when 𝑔 = 𝑦; and
𝜁 ( 𝑗2 |R) = 𝜁 ( 𝑗1 |R), when 𝑔 = 𝑦 + 1, a con-
tradiction.

5. Let 𝑈 = {𝑘1, 𝑚
𝑞
𝑔}, 𝑚𝑞

𝑔 (1 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗1 |R) = 𝜁 ( 𝑗2 |R), for 𝑔 = 1; 𝜁 (𝑚1

𝑛 |R) =

𝜁 (𝑘2 |R), when 2 ≤ 𝑔 ≤ 𝑦; and 𝜁 (𝑚1
𝑦+1 |R) =

𝜁 (𝑙𝑦+2 |R), when 𝑔 = 𝑦 + 1, a contradiction.

6. Let𝑈 = R = {𝑙1, 𝑚𝑞
𝑔}, 𝑚𝑞

𝑔 (1 ≤ 𝑔 ≤ 𝑦 + 1), then
𝜁 ( 𝑗1 |R) = 𝜁 ( 𝑗2 |R), for 𝑔 = 1; 𝜁 (𝑚1

𝑛−1 |R) =

𝜁 ( 𝑗2 |R), when 2 ≤ 𝑔 ≤ 𝑦 − 1; 𝜁 (𝑚1
𝑦 |R) =

𝜁 (𝑚2
𝑦−1 |R), when 𝑔 = 𝑦; and 𝜁 (𝑚1

𝑦+1 |R) =

𝜁 (𝑚2
𝑦+2 |R), when 𝑔 = 𝑦 + 1, a contradiction.

Thus, from this we have 𝑑𝑖𝑚(M𝑛) ≥ 3, implying that
𝑑𝑖𝑚(M𝑛) = 3, ∀ 𝑛 ≥ 6.

Case(II) 𝑛 ≡ 1(𝑚𝑜𝑑 2).
We set 𝑛 = 2𝑦 + 1, 𝑦 ∈ Z+ and 𝑦 ≥ 3. Let
𝑈 = { 𝑗2, 𝑗𝑦+1, 𝑗𝑛} ⊂ 𝑉 (M𝑛). Next, each vertex of M𝑛

has given metric coordinate corresponding to the taken
set 𝑈.

For vertices over 𝑗-cycle, i.e., { 𝑗𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the
metric co-ordinates are

𝜁 ( 𝑗𝛼 |𝑈) =

(1, 𝑦, 𝛼) 𝛼 = 1;
(𝛼 − 2, 𝑦 − 𝛼 + 1, 𝛼) 2 ≤ 𝛼 ≤ 𝑦;
(𝛼 − 2, 𝑦 − 𝛼 + 1, 2𝑦 − 𝛼 + 1) 𝛼 = 𝑦 + 1;
(𝛼 − 2, 𝛼 − 𝑦 − 1, 2𝑦 − 𝛼 + 1) 𝛼 = 𝑦 + 2;
(2𝑦 − 𝛼 + 3, 𝛼 − 𝑦 − 1, 2𝑦 − 𝛼 + 1) 𝑦 + 3 ≤ 𝛼

≤ 2𝑦 + 1.

For the vertices {𝑘𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the metric
co-ordinates are 𝜁 (𝑘𝛼 |𝑈) = 𝜁 ( 𝑗𝛼 |𝑈) + (1, 1, 1) for
1 ≤ 𝛼 ≤ 𝑛. Next, for the vertices {𝑙𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the
metric co-ordinates are 𝜁 (𝑙𝛼 |𝑈) = 𝜁 (𝑘𝛼 |𝑈) + (1, 1, 1)
for 1 ≤ 𝛼 ≤ 𝑛.

For the vertices {𝑚𝛼 : 1 ≤ 𝛼 ≤ 𝑛}, the metric co-
ordinates are

𝜁 (𝑚𝛼 |𝑈) =

(3, 𝑦 − 𝛼 + 3, 𝛼 + 3) 𝛼 = 1;
(𝛼 + 1, 𝑦 − 𝛼 + 3, 𝛼 + 3) 2 ≤ 𝛼 ≤ 𝑦;
(𝛼 + 1, 𝛼 − 𝑦 + 2, 2𝑦 − 𝛼 + 3) 𝛼 = 𝑦 + 1;
(2𝑦 − 𝛼 + 5, 𝛼 − 𝑦 + 2, 2𝑦 − 𝛼 + 3) 𝑦 + 2 ≤ 𝛼 ≤ 2𝑦;
(2𝑦 − 𝛼 + 5, 𝛼 − 𝑦 + 2, 3) 𝛼 = 2𝑦 + 1.

Finally, for the vertices {𝑜𝑠𝛼 : 1 ≤ 𝛼 ≤
𝑛, 1 ≤ 𝑠 ≤ 𝑞}, the metric co-ordinates are
𝜁 (𝑜𝑠𝛼 |𝑈) = 𝜁 (𝑚𝛼 |𝑈) + (𝑠, 𝑠, 𝑠) for 1 ≤ 𝛼 ≤ 𝑛.
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Next, these codes for all vertices in M𝑛 are unique
and distinct from one and an other in at least one co-
ordinate, which results in 𝑑𝑖𝑚(M𝑛) ≤ 3. Assuming
that 𝑑𝑖𝑚(M𝑛) = 2, then as in Case (I), we have the
same contradictions. Therefore, we have 𝑑𝑖𝑚(M𝑛) = 3
as well in this case, which proves the theorem.

□

Proposition 3.2. The resolving independent number
for M𝑛 is 3, ∀ 𝑛 ≥ 6.

Proof. For the proof, follow Theorem 3.1. □

4. Conclusion and Discussion

Obtaining resolving set for novel planar structure plays
an important role in interconnection networks for the
transmission of the data. In this article, we proved
that 𝑑𝑖𝑚(L𝑛) = 𝑑𝑖𝑚(M𝑛) = 3, where L𝑛 and M𝑛 are
obtained by joining 𝑞-copies of the prism graph on 𝑅𝑛

[9] and 𝑈𝑛 [7], respectively. Further, we demonstrated
for these two planar convex polytope graphs that the
cardinality of respective resolving independent set is
also three for them. Further, several other variations
of MD were also introduced in last two decades, such
as edge metric dimension, local metric dimension,
strong metric dimension, mixed metric dimension,
etc [11, 12, 14]. Therefore, in future we will try to
investigate several other variants of MD for the planar
graphs L𝑛 and M𝑛.
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