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ABSTRACT:
Background: The Pythagorean triple based on Pythagorean Theorem, were known in to ancient Babylon and Egypt.
The interrelation of the three was known as far back as thousands of years, but it was Pythagoras who explicitly
explained their equation.
Purpose: Different methods have been put forth by the mathematicians for generation of Pythagorean’s triple and
𝑛-tuples but this paper provides a unique method how these get self-generated by use of simple algebraic expansions.
Methods: An algebraic quantity (𝑎 + 𝑏) squared equals to (𝑎 − 𝑏) squared plus 4𝑎𝑏 and if 𝑎 or 𝑏 is assigned such a
value that makes 4𝑎𝑏 a whole square, then (𝑎 + 𝑏), (𝑎 − 𝑏) and under root of 4𝑎𝑏 turns Pythagorean’s triple. Similarly,
utilizing such algebraic identities, Pythagorean’s quadruple up to 𝑛-tuples can be generated. If (𝑎 + 𝑏) is squared, it
provides 𝑎 squared plus 𝑏 squared plus 2𝑎𝑏. If quantity 2𝑎𝑏 is transformed to a whole square on account of assigning
values to 𝑎 or 𝑏, then Pythagorean’s quadruples are obtained.
Results: Assigning specific values to the terms of simple algebraic identities results in the generation of Pythagorean
triples and 𝑛-tuples.
Conclusions: This paper presents empirical research in which algebraic identities are utilized, resulting in the
self-generation of Pythagorean 𝑛-tuples. Specific formulas need not be applied, as basic algebraic identities are well
known to scholars and students alike.
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1. Introduction

In a right angled triangle, if 𝑎 is the length of its
base 𝐴𝐵, 𝑏 of perpendicular 𝐴𝐶, then 𝑐 length of its
hypotenuses 𝐵𝐶 is given by the relation 𝑐2 = 𝑎2 + 𝑏2

and 𝑎, 𝑏, 𝑐 are called Pythagorean’s triple [? ]. Euclid
gave a formula to generate these triples using two
integers 𝑚 and 𝑛 [? ]. In his formula, referring to
Figure 1, hypotenuse 𝑐 equals to (𝑚2 + 𝑛2), base 𝑎

to (2𝑚𝑛) and perpendicular 𝑏 to (𝑚2 − 𝑛2). Since
quantities 𝑎, 𝑏, 𝑐 appear in squares, it does not matter
whether these are positive or negative in polarity. When
triple 𝑎, 𝑏, 𝑐 do not have common factors, it is primitive
otherwise non-primitive. Further, if in a right angled
triangle 𝐴𝐵𝐶, a perpendicular of length 𝑑 is raised
at point 𝐶 on its hypotenuse 𝐵𝐶 up to point 𝐷, then

length of closing side 𝐵𝐷 of quadrilateral 𝐵𝐶𝐴𝐷, is
given by the relation 𝑒2 = 𝑐2 + 𝑑2 = 𝑎2 + 𝑏2 + 𝑑2 and
integers 𝑎, 𝑏, 𝑑, 𝑒 are called Pythagorean’s quadruple.
Kindly refer to Figure 1. If 𝑎 is odd and 𝑚, 𝑛, 𝑝, 𝑞 are
positive integers with greatest common divisor 1, the
quadruple 𝑎, 𝑏, 𝑑, 𝑒 can be generated by formulae 𝑎 =

𝑚2+𝑛2− 𝑝2−𝑞2, 𝑏 = 2(𝑚𝑞+𝑛𝑝),𝑑 = 2(𝑛𝑞−𝑚𝑝) and
𝑒 = 𝑚2+𝑛2− 𝑝2−𝑞2,𝑏 = 2(𝑚𝑞+𝑛𝑝), 𝑑 = 2(𝑛𝑞−𝑚𝑝)
and 𝑒 = 𝑚2 + 𝑛2 + 𝑝2 + 𝑞2 provided 𝑚 + 𝑛 + 𝑝 + 𝑞 is
odd [? ? ? ]. Therefore, a primitive quadruple is
given by identity

(𝑚2 + 𝑛2 + 𝑝2 + 𝑞2)2 =

(𝑚2 + 𝑛2 − 𝑝2 − 𝑞2)2 + 2(𝑚𝑞 + 𝑛𝑝)2

+2(𝑛𝑞 − 𝑚𝑝)2,

(1)
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Figure 1: Displaying Sides BA, AC, CB Pythagorean’s
Triple, BD, DA, AC, CB Quadruple, AE, ED, DA, AC, CB
Quintuple.

According to Paul Oliverio, if 𝑎 and 𝑏 are of opposite
parity, then 𝑑 = (𝑎2+𝑏2−1)/2 and 𝑒 = (𝑎2+𝑏2+1)/2,
satisfy the relation 𝑒2 = 𝑎2 + 𝑏2 + 𝑑2. On the other
hand, if 𝑎 and 𝑏 are even, then 𝑑 =

(𝑎2+𝑏2 )
4 − 1 and

𝑒 =
(𝑎2+𝑏2 )

4 + 1 satisfy the relation 𝑒2 = 𝑎2 + 𝑏2 + 𝑑2

[? ]. Coming to quintuple, if another perpendicular of
length 𝑓 is drawn at point 𝐷 on side 𝐵𝐷 up to point
𝐸 , then closing side 𝐵𝐸 of length 𝑔 of polygon of
five sides, is given by relation 𝑔2 = 𝑎2 + 𝑏2 + 𝑑2 + 𝑓 2

and 𝑎, 𝑏, 𝑑, 𝑓 , 𝑏, 𝑔 are called Pythagorean’s quintuple.
Kindly refer to Figure 1. proceeding in this fashion,
𝑛𝑡ℎ side an of polygon of 𝑛 sides, can be calculated by
relation

𝑎2
𝑛 = 𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ...... + 𝑎2
𝑛−1

where lengths in integers 𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛 of the
sides of the polygon are given the nomenclature of
Pythagorean’s 𝑛-tuple. With this background, I have
determined formulae in proceeding sections for gen-
erating triples to 𝑛-tuples using elementary algebraic
identities. I have adopted four different un-attempted
methods for generation of such tuples.

2. Method & Materials

2.1. Self-Generating Quadruples

Consider an algebraic identity

(𝐴𝑥 + 𝐵𝑎)2 = (𝐴𝑥)2 + 2𝐴𝐵𝑥𝑎 + (𝐵𝑎)2 (2)

Each terms in right hand side of this identity, will be
a square, when term (2𝐴𝐵𝑥𝑎) is also a square. That
necessitates, both 𝑥 and 𝑎 must be squares and also
either 𝐴 should be double of 𝐵 or 𝐵 should be double
of 𝐴. Substituting 𝐵 with 2𝐴, 𝑥 with 𝑥2 and 𝑎 with 𝑎2,
Equation (2), on simplification, takes the form,

(𝑥2 + 2𝑎2)2 = (𝑥2)2 + (2𝑥𝑎)2 + (2𝑎2)2 (3)

and, when 𝐴 = 2𝐵, Equation (2) takes the form

(2𝑥2 + 𝑎2)2 = (2𝑥2)2 + (2𝑥𝑎)2 + (𝑎2)2 (4)

Where 𝑥 is a variable. These are, in fact, parametric
solutions to Pythogorean’s quadruples for all real ratio-
nal values of 𝑥 and 𝑎. Derivation of Equations(3) and
(4) proves LEMMAS 1 and 2.

LEMMA 1:
(𝑥2), (2𝑥𝑎), (2𝑎2) and (𝑥2 + 2𝑎2) are always
Pythagorean’s quadruple for all integer values of 𝑥

and 𝑎.

LEMMA 2:
(2𝑥2), (2𝑥𝑎), (𝑎2), and (2𝑥2 + 𝑎2) are always
Pythagorean’s quadruple for all integer values of 𝑥

and 𝑎.

Examples:
When (𝑥, 𝑎) have values (1, 3), (5, 3), (11, 1), (7, 3),
using equation (3) quadruples obtained (1, 6, 18, 19),
(25, 30, 18, 43), (121, 22, 2, 123), (98,42, 9, 107)
respectively.

2.1.1. Self-Generating 𝑛-Tuples
If 𝑥 is substituted with 𝑥2, 𝑎 with 𝑎2, 𝐴 and 𝐵 each
with 1 in Equation (2), then (𝑥2 + 𝑎2)2, on expansion
equals (𝑥2)2 + (𝑥𝑎)2 + (𝑎2)2. This can also be written,{
𝑥2

(
12 + 12

2

)
+ 𝑎2

}2

= (𝑥2)2 + (𝑥𝑎)2(12 +12) + (𝑎2)2
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In general, we can write {
𝑥2

(
𝑎2

1 + 𝑎2
2

2

)
+ 𝑎2

}2

={
𝑥2

(
𝑎2

1 + 𝑎2
2

2

)}2

+ (𝑥𝑎)2(𝑎2
1 + 𝑎2

2) + (𝑎2)2.

On multiplying with 4,

[𝑥2(𝑎2
1 + 𝑎2

2) + 2𝑎2)]2 =

[𝑥2(𝑎2
1 + 𝑎2

2)]
2 + [2𝑎1𝑥𝑎]2 + [2𝑎2𝑥𝑎]2 + [2𝑎2]2

(5)

Similarly we can derive

[2𝑥2 + 𝑎2(𝑎2
1 + 𝑎2

2)]
2 =

[2𝑥2]2 + [2𝑎1𝑥𝑎]2 + [2𝑎2𝑥𝑎]2 + [(𝑎2
1 + 𝑎2

2)𝑎
2]2

(6)

where 𝑥, 𝑎2, 𝑎1 and 𝑎 are real rational quantities. These
are parametric solutions to quintuple. Derivation of
Equations (5) and (6) proves LEMMA 3 and 4.

LEMMA 3:
{𝑥2(𝑎2

1 + 𝑎2
2)}, (2𝑎1𝑥𝑎), (2𝑎2𝑥𝑎), (2𝑎2)

and {𝑥2(𝑎2
1 + 𝑎2

2) + 𝑎2
2}

are always Pythagorean’s quintuple for all integer val-
ues of 𝑥, 𝑎1, 𝑎2 and 𝑎.

LEMMA 4:
(2𝑥2), (2𝑎1𝑥𝑎), (2𝑎2𝑥𝑎), {𝑎2(𝑎2

1 + 𝑎2
2)}

and {2𝑥2 + 𝑎2(𝑎2
1 + 𝑎2

2)}

are always Pythagorean’s quintuple for all integer val-
ues of 𝑥, 𝑎1, 𝑎2 and 𝑎.

Examples:
When (𝑥, 𝑎, 𝑎1, 𝑎2) have values (2, 3, 4, 5), (3, 2 ,5,
6), (7, 5, 3, 1), (10, 1, 2, 3) using Equation (5) we
obtain quintuples (164, 48, 60, 18, 182), (549, 60,
72, 8, 557), (490, 210,70, 50, 540), (1300, 40, 60, 2,
1302) respectively and using Equation (6), we obtain
quintuple (8, 48, 60, 369, 377), (18, 60, 72, 244,
262), (98, 210,70, 250, 348), (200, 40, 60, 13, 213)
respectively. When 𝑛 = 6 we substitute (𝑎2

1 + 𝑎2
2) with

(𝑎2
1 + 𝑎2

2 + 𝑎2
3) in Equation (5) and (6) and we obtain

parametric solutions to sextuples,

[𝑥2(𝑎2
1 + 𝑎2

2 + 𝑎2
3) + 2𝑎2]2 =

[𝑥2(𝑎2
1 + 𝑎2

2 + 𝑎2
3)]

2 + [2𝑎1𝑥𝑎]2 + [2𝑎2𝑥𝑎]2

+[2𝑎3𝑥𝑎]2 + [2𝑎2]2

(7)

and

[2𝑥2 + (𝑎2
1 + 𝑎2

2 + 𝑎2
3)𝑎

2]2 =

[2𝑥2]2 + [2𝑎1𝑥𝑎]2 + [2𝑎2𝑥𝑎]2 + [2𝑎3𝑥𝑎]2+

[(𝑎2
1 + 𝑎2

2 + 𝑎2
3)𝑎

2]2

(8)

respectively. Derivation of these Equations proves
LEMMAS 5 and 6.

LEMMA 5:
{𝑥2(𝑎2

1 + 𝑎2
2 + 𝑎2

3)},(2𝑎1𝑥𝑎),(2𝑎2𝑥𝑎), (2𝑎3𝑥𝑎),(2𝑎2)
and {𝑥2(𝑎2

1 + 𝑎
2
2 + 𝑎

2
3) + 2𝑎2} are always Pythagorean’s

sextuples for all integer values of 𝑥, 𝑎1, 𝑎2, 𝑎3 and 𝑎.

LEMMA 6:
(2𝑥2), (2𝑎1𝑥𝑎), (2𝑎2𝑥𝑎), (2𝑎3𝑥𝑎), {𝑎2(𝑎2

1 + 𝑎2
2 + 𝑎2

3)}
and {2𝑥2 + 𝑎2(𝑎2

1 + 𝑎
2
2 + 𝑎

2
3)} are always Pythagorean’s

sextuples for all integer values of 𝑥, 𝑎1, 𝑎2, 𝑎3 and 𝑎.

Examples:
When (𝑥, 𝑎, 𝑎1, 𝑎2, 𝑎3) are equal to (2, 3, 4, 5, 6), (3, 2,
5, 6, 7), (7, 5, 3, 1, 2), (10, 1, 2, 3, 4), using Equation
(7), we obtain Pythagorean’s sextuples, (308, 48, 60, 72,
18, 326), (990, 60, 72, 84, 8, 998), (686, 210, 70, 140,
50, 736), (2900, 40, 60, 80, 2, 2902) respectively and
using Equation (8), we obtain Pythagorean’s sextuples
respectively. Generalizing the equations for 𝑛-tuples,

[𝑥2(𝑎2
1 + 𝑎2

2 + 𝑎3 + ... + 𝑎𝑛−3) + 2𝑎2]2 =

[𝑥2(𝑎2
1 + 𝑎2

2 + 𝑎3 + ... + 𝑎𝑛−3)]2

+[2𝑎1(𝑥𝑎)]2 + [2𝑎2(𝑥𝑎)]2 + [2𝑎3(𝑥𝑎)]2

+... + [2𝑎𝑛−3(𝑥𝑎)]2 + [2𝑎2]2.

(9)

and

[2𝑥2 + 𝑎2(𝑎2
1 + 𝑎2

2 + 𝑎2
3 + ... + 𝑎𝑛−3)]2 =

[𝑎2(𝑎2
1 + 𝑎2

2 + 𝑎2
3 + ... + 𝑎𝑛−3)]2

+[2𝑎1(𝑥𝑎)]2 + [2𝑎2(𝑥𝑎)]2 + [2𝑎3(𝑥𝑎)]2

+... + [2𝑎𝑛−3(𝑥𝑎)]2 + [2𝑥2]2,

(10)
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where 𝑥, 𝑎, 𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−3 are integers, if 𝑆𝑛−3 =

𝑎2
1 + 𝑎2

2 + 𝑎2
3 + ... + 𝑎2

𝑛−3, then

[𝑥2𝑆𝑛−3 + 2𝑎2]2 =

[𝑥2𝑆𝑛−3]2 + [2𝑎1(𝑥𝑎)]2 + [2𝑎2(𝑥𝑎)]2

+[2𝑎3(𝑥𝑎)]2 + ... + [2𝑎𝑛−3(𝑥𝑎)]2

+[2𝑎2]2.

(11)

and

[2𝑥2 + 𝑆𝑛−3𝑎
2]2 =

[2𝑥2]2 + [2𝑎1(𝑥𝑎)]2 + [2𝑎2(𝑥𝑎)]2

+[2𝑎3(𝑥𝑎)]2 + ... + [2𝑎𝑛−3(𝑥𝑎)]2

+[𝑆𝑛−3𝑎
2]2.

(12)

Derivation of Equations (9) and (10) proves LEMMA
7 and LEMMA 8.

LEMMA 7:
[2𝑎1(𝑥𝑎)], [2𝑎2(𝑥𝑎)], [2𝑎3(𝑥𝑎)],...,[2𝑎𝑛−3(𝑥𝑎)],
[2𝑎2], [𝑥2𝑆𝑛−3] and [𝑥2𝑆𝑛−3 + 2𝑎2] are always
Pythagorean’s 𝑛-tuples for all real rational values of
𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−3, 𝑎 and 𝑥, where,
𝑆𝑛−3 = 𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ... + 𝑎2
𝑛−3.

LEMMA 8:
[2𝑎1(𝑥𝑎)], [2𝑎2(𝑥𝑎)], [2𝑎3(𝑥𝑎)],....,[2𝑎𝑛−3(𝑥𝑎)],
[2𝑥2], [𝑎2𝑆𝑛−3] and [2𝑥2 + 𝑆𝑛−3𝑎

2] are always
Pythagorean’s tuples for all real rational values of
𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−3, 𝑎 and 𝑥, where,
𝑆𝑛−3 = 𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ... + 𝑎2
𝑛−3.

Examples:
When (𝑥, 𝑎, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6),(𝑥, 𝑎, 𝑎1, 𝑎2, 𝑎3, 𝑎4,

𝑎5, 𝑎6, 𝑎7) are equal to (1, 2, 3, 4, 5, 6, 7, 8), (1, 3, 1,
5, 6, 7, 8, 9, 10, 4, 1), then using Equation (11), we
obtain Pythagorean’s 𝑛-tuples. (12, 16, 20, 24, 28, 32,
8, 199, 207), (6, 30, 36, 42, 48, 54, 60, 24, 6, 18, 373,
391) respectively and when (𝑥, 𝑎, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6),
(𝑥, 𝑎, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7) are equal to (2, 3, 4, 5,
6, 7, 8), (1, 3, 1, 5, 6, 7, 8, 9, 10, 4, 1), then using
Equation (12) we obtain Pythagorean’s 𝑛-tuples (36,
48, 60, 72, 84, 96, 8, 1791, 1799), (6, 30, 36, 42, 48,
54, 60, 24, 6, 2, 3357, 3359) respectively.

2.1.2. n-Tuples with Fixed Terms 𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−3

If my requirement is such that the tuples
𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−3 must appear in 𝑛-tuples, then sum
must be even integer and that requires, odd integers, if
any, out of 𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−3 must occur in pairs.
If, 2𝑠𝑛−3 = 𝑆𝑛−3, 𝑥 = 1
and 𝑎 = 1,
then Equation (11) and (12) can be

[𝑆𝑛−3 + 1]2 =

[𝑆𝑛−3]2 + [𝑎1]2 + [𝑎2]2 + [𝑎3]2

+... + [𝑎𝑛−3]2 + [1]2

(13)

Kindly note the difference between 𝑠 and 𝑆, both
should not be confused denoting to same quantity.
These derivations prove LEMMA 9.

LEMMA 9:
[𝑎1],[𝑎2],[𝑎3],...[𝑎𝑛−3] will always be part of
Pythagorean’s 𝑛-tuples with other three terms [? ],
[𝑠𝑛−3], [𝑠𝑛−3 + 1] where 𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−3, 𝑠𝑛−3 are
integers, if

𝑠𝑛−3 =
1
2
(𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ... + 𝑎2
𝑛−3)

and
(𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ... + 𝑎2
𝑛−3)

are even integer.

Examples:
Ages of a family members in years, are 67, 59, 36 and 30.
Their sum being even integer, these can be expressed in
Pythagoras 𝑛-tuple where 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are 67, 59 ,
36 and 30 respectively and 𝑠4 = (1/2) (10116) = 5083.
Using Equation (13), 50842 = 50832 + 12 + (672 +
592 + 362 + 302). Given in the bracket are ages of
the family members expressed in Pythagorean’s n-
tuple. If age 2 years of the pet is included, then
𝑠5 = (1/2) (10120) = 5085 and the corresponding 𝑛-
tuple is 50862 = 50852+12+(672+592+362+302+22).
Seven is the lucky number for the family and 563 is
the house number, on including these, we get, 𝑠7 =

(1/2) (327188) = 163594. Corresponding 𝑛-tuple is
1635952 = 1635942 + 12 + (672 + 592 + 362 + 302 +
22 + 72 + 5632).
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2.2. Second Method to Generate Pythagorean’s 𝑛-
Tuples

Let 𝑎, 𝑏, and 𝑐 be Pythagorean’s triple satisfying rela-
tion 𝑐2 = 𝑎2 + 𝑏2 [? ]. We express integers 𝑐 and 𝑏

in algebraic form 𝑐1𝑥 + 𝑐2 and 𝑏1𝑥 + 𝑏2 respectively,
where 𝑐1, 𝑐2, 𝑏1 and 𝑏2 are real rational quantities, then,
(𝑐1𝑥 + 𝑐2)2 − (𝑏1𝑥 + 𝑏2)2 = 𝑎2. On expansion and rear-
ranging, 𝑥2(𝑐2

1 − 𝑏2
1) + 2𝑥(𝑐1𝑐2 − 𝑏1𝑏2) + 𝑐2

2 − 𝑏2
2 = 𝑎2.

Let, 𝑐1 = 𝑏1 = 𝑐 and, 𝑐2 = −𝑏2 = 𝑝2,
then (𝑐𝑥+𝑝2)2−(𝑐𝑥−𝑝2)2 = 4𝑥𝑝2𝑐 = 𝑎2. Substituting
𝑦2 for 𝑥, above equation gets transformed into

(𝑐𝑦2 + 𝑝2)2 − (𝑐𝑦2 − 𝑝2)2 = 4𝑝2𝑦2𝑐 = 𝑎2. (14)

Let, 𝑐 = 𝑆𝑛−2 = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + .... + 𝑎2

𝑛−2,

then Equation (14) takes the form ;

(𝑦2𝑆𝑛−2 + 𝑝2)2 = (𝑦2𝑆𝑛−2 − 𝑝2)2 +4𝑝2𝑦2(𝑎2
1 + 𝑎

2
2 + 𝑎

2
3

+.... + 𝑎2
𝑛−2.

When 𝑎2 = 𝑎3 = 𝑎4 = ... = 𝑎𝑛−2 = 0, then this equa-
tion will be a parametric solution to triples, otherwise,
it can be written in 𝑆 form as;

(𝑦2𝑆𝑛−2 + 𝑝2)2 =

(𝑦2𝑆𝑛−2 − 𝑝2)2 + (2𝑝𝑦𝑎1)2 + (2𝑝𝑦𝑎2)2

+(2𝑝𝑦𝑎3)2 + ... + (2𝑝𝑦𝑎𝑛−2)2,

(15)

which is a parametric solution to 𝑛-tuples. Equation
(15) can also be transformed into,

(𝑦2 + 𝑆𝑛−2𝑝
2)2 =

(𝑦2 − 𝑆𝑛−2𝑝
2)2 + (2𝑝𝑦𝑎1)2 + (2𝑝𝑦𝑎2)2

+(2𝑝𝑦𝑎3)2 + ... + (2𝑝𝑦𝑎𝑛−2)2.

(16)

which is a parametric solution to 𝑛-tuples. Putting
𝑝 = 1, Equation (13) takes the form,

(𝑦2 + 𝑆𝑛−2)2 =

(𝑦2 − 𝑆𝑛−2)2 + (2𝑦𝑎1)2 + (2𝑦𝑎2)2 + (2𝑦𝑎3)2

+... + (2𝑦𝑎𝑛−2)2.

(17)

For triples, 𝑛 = 3, 𝑆1 equals to 𝑎2
1 and parametric

solution is

(𝑦2 + 𝑎2
1)

2 = (𝑦2 − 𝑎2
1)

2 + (2𝑦𝑎1)2. (18)

For quadruples, n=4,𝑆2 equals to 𝑎2
1 + 𝑎2

2 and paramet-
ric solution is,

(𝑦2 + 𝑎2
1 + 𝑎2

2)
2 =

(𝑦2 − 𝑎2
1 − 𝑎2

2)
2 + (2𝑦𝑎1)2 + (2𝑦𝑎2)2.

(19)

These derivations prove LEMMA 10.

LEMMA 10:
When 𝑦, 𝑝, 𝑎1, 𝑎2, 𝑎3, ...., 𝑎𝑛−2 are integers and
𝑆𝑛−2 = 𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ..... + 𝑎2
𝑛−2 then, (𝑦2 −

𝑆𝑛−2𝑝
2), (2𝑝𝑦𝑎1), (2𝑝𝑦𝑎2), (2𝑝𝑦𝑎3), ....,(2𝑝𝑦𝑎𝑛−2),

and,(𝑦2 + 𝑆𝑛−2𝑝
2) are tuples of Pythagorean’s 𝑛-tuples.

Examples:
For Pythagorean’s quadruples, we assume (𝑦, 𝑎1, 𝑎2)
as (4, 1, 2), (4, 2, 3), (17, 1, 9), then using Equation
(19) corresponding quadruples are (11, 8, 16, 21), (3,
16, 24, 29), (297, 34, 306, 371) respectively. For 𝑛 = 9,
assuming (𝑦, 𝑎1, 𝑎2, 𝑎3, ..., 𝑎7) as (41, 2, 4, 6, 3, 1, 9,
11) and using Equation (17), we obtain corresponding
𝑛-tuple (1413, 164, 328, 492, 246, 82, 738, 902, 1949).

2.2.1. n-Tuples with Fixed Terms 𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−2

I consider Equation (17) and substitute 𝑆𝑛−2 with
𝑆𝑛−2/4 and 𝑦 with 1, then

(1 + 𝑆𝑛−2/4)2 =

(1 − 𝑆𝑛−2/4)2 + (𝑎1)2 + (𝑎2)2 + (𝑎3)2

+... + (𝑎𝑛−2)2.

Since 𝑆𝑛−2/4 should have integer value, that requires,
it should be of form 4k. To achieve this objective,
there must be, at least, two pairs of odd integers, if
𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−2 happen to have odd integers. In that
case, let 𝑆𝑛−2 = 4𝑠𝑛−2, then

(1 + 𝑠𝑛−2)2 =

(1 − 𝑠𝑛−2)2 + (𝑎2
1 + 𝑎2

2 + 𝑎2
3 + ... + 𝑎2

𝑛−2).
(20)

Examples:
Let 𝑎1 = 1001, 𝑎2 = 1, 𝑎3 = 10001, 𝑎4 = 11 and
𝑎5 = 64, then 𝑠5 = 25256555 and 𝑛-tuples, where
𝑛 = 7, are given by relation,
252565562 = 252565542 + 10012 + 12 + 100012 +
112 + 642. Let 𝑎1 = 16, 𝑎2 = 78, 𝑎3 = 1248 and
𝑎4 = 2, then 𝑠4 = 390962 and 𝑛-tuples are given by
relation, 3909632 = 3909612+162+782+12482+22.
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2.3. Third Method To Generate 𝑛-Tuples Using Recur-
sive Relation

It is proved in Equation (18) that

(𝑥2
1 + 𝑎2)2 = (𝑥2

1 − 𝑎2)2 + (2𝑥1𝑎
2)2

On putting, 𝑥1 = 𝑥2
2 + 𝑎2 and substituting (𝑥2

2 + 𝑎2)2

with (𝑥2
2 − 𝑎2)2 + 22𝑎2(𝑥2)2, I get,

{(𝑥2
2 + 𝑎2)2 + 𝑎2}2 =

{(𝑥2
2 + 𝑎2)2 − 𝑎2}2 + {2𝑎(𝑥2

2 − 𝑎2)}2

+{22𝑎2𝑥2}2.

(21)

Equation (21) is a parametric solution to quadruples
and proves LEMMA 11.

LEMMA 11:
{(𝑥2

2 + 𝑎2)2 − 𝑎2}, {2𝑎(𝑥2
2 − 𝑎2)}, {22𝑎2(𝑥2)}and

{(𝑥2
2 + 𝑎2)2 + 𝑎2},

are always Pythagorean’s quadruples, where 𝑥2 and 𝑎

are integers.

Example:
On assigning to (𝑥2, 𝑎) values of (5, 1), (1, 3), (7, 3), (5,
4), Pythagorean’s quadruples obtained are (675, 48, 20,
677), (91, 48, 36, 109), (3355, 240, 252, 3373), (1665,
72, 320, 1697) respectively. On putting 𝑥2 = 𝑥2

3 + 𝑎2

and substituting (𝑥2
3 +𝑎

2)2 with (𝑥2
3 −𝑎2)2 +22𝑎2(𝑥3)2,

we get,

[{(𝑥2
3 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 =

[{(𝑥2
3 + 𝑎2)2 + 𝑎2}2 − 𝑎2]2

+[2𝑎{(𝑥2
3 + 𝑎2)2 − 𝑎2}

+[22𝑎2(𝑥2
3 − 𝑎2)]2 + [23𝑎3𝑥3]2.

(22)

Also Equation (22) is a parametric solution to quintu-
ples and proves LEMMA 12.

LEMMA 12:
[{(𝑥2

2 + 𝑎2)2 + 𝑎2}2 − 𝑎2], [2𝑎{(𝑥2
3 + 𝑎2)2 − 𝑎2}],

[22𝑎2(𝑥2
3−𝑎

2)], [23𝑎3(𝑥3)]and[{(𝑥2
3+𝑎

2)2+𝑎2}2+𝑎2] .

are always Pythagorean’s quintuples, where 𝑥3 and 𝑎

are integers.

Examples:
On assigning to (𝑥3, 𝑎) values of (1, 2), (3, 2), (4, 1)
Pythagorean’s quintuples obtained are (835, 84, 48, 64,

845), (29925, 660, 80, 192, 29933), (84099, 576, 60,
32, 84101) respectively. On putting 𝑥3 = 𝑥2

4 + 𝑎2 and
substituting (𝑥2

4 + 𝑎2)2 with (𝑥2
4 − 𝑎2)2 + 22𝑎2(𝑥4)2,

we get,

[[{(𝑥2
4 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 + 𝑎2]2 =

[[{(𝑥2
4 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 − 𝑎2]2

+[2𝑎[{(𝑥2
4 + 𝑎2)2 + 𝑎2}2 − 𝑎2]]2

+[22𝑎2(𝑥2
4 + 𝑎2)2 − 𝑎2}]27

+[23𝑎3(𝑥2
4 − 𝑎2)]2 + [24𝑎4(𝑥4)]2.

(23)

Also Equation (23) is a parametric solution to sextuples
and proves LEMMA 13.

LEMMA 13:
[[{(𝑥2

4 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 − 𝑎2], [2𝑎[{(𝑥2
4 + 𝑎2)2

+𝑎2}2−𝑎2]], [22𝑎2(𝑥2
4+𝑎

2)2−𝑎2}]2, [23𝑎3(𝑥2
4−𝑎

2)]2

+[24𝑎4(𝑥4)]2, [[{(𝑥2
4 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 + 𝑎2]2.

are always Pythagorean’s sextuples, where 𝑥4 and 𝑎

are integers.

Examples:
On assigning to (𝑥4, 𝑎) values of (1, 3), (1, 2), (3, 1), (2,
3), Pythagorean’s sextuples obtained are (141372091,
71232, 3276, 1728, 1296, 141372109), (714021, 3348,
336, 192, 256, 714029) respectively. Proceeding in the
way, I determined parametric solution to 𝑛-tuples,

[[{(𝑥2
𝑛−2 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 + ... + 𝑎2]2 =

[[[{(𝑥2
𝑛−2 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 + ... − 𝑎2]2

+[2𝑎[{(𝑥2
𝑛−2 + 𝑎2)2 + 𝑎2}2 + ..... − 𝑎2]]2

+[22𝑎2{(𝑥2
𝑛−2 + 𝑎2)2 + .... − 𝑎2}]2 + ....

+[2(𝑛−3)𝑎 (𝑛−3) (𝑥2
𝑛−2 − 𝑎2)]2

+[2(𝑛−2)𝑎 (𝑛−2) (𝑥𝑛−2)]2.

(24)

Also Equation (24) proves LEMMA 14.

LEMMA 14:
[[{(𝑥2

𝑛−2+𝑎
2)2+𝑎2}2+𝑎2]2+ ...−𝑎2]2, [2𝑎[{(𝑥2

𝑛−2+
𝑎2)2 + 𝑎2}2 + ..... − 𝑎2]]2, [22𝑎2{(𝑥2

𝑛−2 + 𝑎2)2 + .... −
𝑎2}]2, ..., [2(𝑛−3)𝑎 (𝑛−3) (𝑥2

𝑛−2 − 𝑎2)]2,

[2(𝑛−2)𝑎 (𝑛−2) (𝑥𝑛−2)]2,

[[{(𝑥2
𝑛−2 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 + ... + 𝑎2]2 are always

Pythagorean’s 𝑛-tuples, where 𝑥𝑛−2 and 𝑎 are integers.
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2.4. Fourth Method to Generate 𝑛-Tuples

In this method, first we will express Pythagorean’s
𝑛-tuples in algebraic form. These will, then be put in
relation 𝐴2

1 + 𝐴2
2 + 𝐴2

3 +.....+𝐴2
𝑛−1 = 𝐴2

𝑛 Constant terms
of this relation will be equated to zero and value of
variable will be found from resultant linear algebraic
equation. Substitution of this value in algebraic tuple
will yield the result. Assuming 𝐴1, 𝐴2, 𝐴3, ..., 𝐴𝑛 to
be Pythagorean’s 𝑛-tuples satisfying relation 𝐴2

1 + 𝐴2
2 +

𝐴2
3 +.....+𝐴2

𝑛−1 = 𝐴2
𝑛 and 𝑎1𝑥, 𝑎2𝑥, 𝑎3𝑥,...,(𝑎𝑛−1𝑥 + 𝑏),

(𝑎𝑛𝑥 + 𝑎), their algebraic representations, then

(𝑎𝑛𝑥 + 𝑎)2 =

(𝑎𝑛−1𝑥 + 𝑏) + (𝑎1𝑥)2 + (𝑎2𝑥)2 + ... + (𝑎𝑛−2𝑥)2.

(25)
where 𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛, 𝑎 and 𝑏 are integers. For
eliminating constant terms, we put 𝑎 = 𝑏, expand and
simplify the equation, to obtain, 𝑥 = 𝑃/𝑄, where
𝑃 = 2𝑎(𝑎𝑛 − 𝑎𝑛−1) and
𝑄 = (𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ... + 𝑎2
𝑛−1 − 𝑎2

𝑛. Substi-
tuting this value of 𝑥 in Equation (25), fol-
lowing 𝑛-tuples obtained after normalization.
[𝑎1(𝑃/𝑄)], [𝑎2(𝑃/𝑄)], [𝑎3(𝑃/𝑄)], , , , , [𝑎𝑛−2(𝑃/𝑄)]
, [𝑎𝑛−1(𝑃/𝑄) + 𝑎], [𝑎𝑛 (𝑃/𝑄) + 𝑎]. Normalization
here, means operation of multiplication with lowest
common multiplier abbreviated LCM to convert
tuples in fractions to integers. This derivation proves
LEMMA 15.

LEMMA 15:
[𝑎1(𝑃/𝑄)], [𝑎2(𝑃/𝑄)], [𝑎3(𝑃/𝑄)], 𝑡𝑜..., [𝑎𝑛−2(𝑃/𝑄)],
[𝑎𝑛−1(𝑃/𝑄) + 𝑎], [𝑎𝑛 (𝑃/𝑄) + 𝑎]. On normaliza-
tion, are always Pythagorean’s n-tuples, where
𝑃 = 2𝑎(𝑎𝑛 − 𝑎𝑛−1), and 𝑄 = (𝑎2

1 + 𝑎
2
2 + 𝑎

2
3 + ...+ 𝑎

2
𝑛−1)

and 𝑎1, 𝑎2, 𝑎3,...,𝑎𝑛 are real rational quantities.
On putting, 𝑎1 = 𝑎2 = 𝑎3 =...=𝑎𝑛−3 = 0, triples obtained
are, [𝑎𝑛−2(𝑃/𝑄)], [𝑎𝑛−1(𝑃/𝑄) + 𝑎], [𝑎𝑛 (𝑃/𝑄) + 𝑎].
This proves LEMMA 16.

LEMMA 16:
[𝑎𝑛−2(𝑃/𝑄)], [𝑎𝑛−1(𝑃/𝑄) + 𝑎], [𝑎𝑛 (𝑃/𝑄) + 𝑎]. on
normalisation, are always Pythagorean’s triples, where
𝑃 = 2𝑎(𝑎𝑛 − 𝑎𝑛−1) and 𝑄 = (𝑎2

𝑛−1 − 𝑎2
𝑛) and 𝑎, 𝑎𝑛−2,

𝑎𝑛−1, 𝑎2
𝑛 are real rational quantities.

Examples:
When (𝑎, 𝑎𝑛, 𝑎𝑛−1, 𝑎𝑛−2) are (3, 1, 2, 3), (11, 2, 3, 5),
then (𝑃/𝑄) on simplification are (1/2), (-11/15) and
triples, on ignoring negative signs, are (3, 4, 5), (55,
132, 143) respectively. On putting, 𝑎1 = 𝑎2 = 𝑎3 =

... = 𝑎𝑛−4 = 0, we obtain quadruples [𝑎𝑛−3(𝑃/𝑄)],
[𝑎𝑛−2(𝑃/𝑄)], [𝑎𝑛−1(𝑃/𝑄) +𝑎], [𝑎𝑛 (𝑃/𝑄) +𝑎]. This
proves LEMMA 17

LEMMA 17:
[𝑎𝑛−3(𝑃/𝑄)], [𝑎𝑛−2(𝑃/𝑄)], [𝑎𝑛−1(𝑃/𝑄) + 𝑎],
[𝑎𝑛 (𝑃/𝑄) + 𝑎], on normalization, are always
Pythagorean’s quadruples, where 𝑃 = 2𝑎(𝑎𝑛 −
𝑎𝑛−1) and 𝑄 = (𝑎2

𝑛−3 + 𝑎2
𝑛−2 + 𝑎2

𝑛−1) − 𝑎2
𝑛 and

𝑎, 𝑎𝑛−3, 𝑎𝑛−2, 𝑎𝑛−1, 𝑎𝑛 are real rational quantities.

Examples:
When (𝑎, 𝑎𝑛, 𝑎𝑛−1, 𝑎𝑛−2, 𝑎𝑛−3) are (3, 1, 2, 3, 7),
(7, 4, 2, 3, 5), then (P/Q) on simplification are
(-6/61), (14/11), (-108/83) and quadruples, on ig-
noring negative signs, are (42, 18, 171, 177),
(70, 42, 105, 133) respectively. On putting,
𝑎1 = 𝑎2 = 𝑎3 = ... = 𝑎𝑛−5 = 0, we ob-
tain quintuples [𝑎𝑛−4𝑃], [𝑎𝑛−3𝑃], [𝑎𝑛−2𝑃], [𝑎𝑛−1𝑃 +
𝑄𝑎], [𝑎𝑛𝑃 +𝑄𝑎].This proves LEMMA 18.

LEMMA 18:
[𝑎𝑛−4𝑃], [𝑎𝑛−3𝑃], [𝑎𝑛−2𝑃], [𝑎𝑛−1𝑃 + 𝑄𝑎], [𝑎𝑛𝑃 +
𝑄𝑎], on normalization, are always Pythagorean’s
quadruples, where,
𝑃 = 2𝑎(𝑎𝑛 − 𝑎𝑛−1) and 𝑄 = (𝑎2

𝑛−4 + 𝑎2
𝑛−3𝑎

2
𝑛−2 +

𝑎2
𝑛−1) − 𝑎2

𝑛 and 𝑎, 𝑎𝑛−4, 𝑎𝑛−3, 𝑎
2
𝑛−2, 𝑎𝑛−1, 𝑎

2
𝑛 are ratio-

nal quantities.

Examples:
When (𝑎, 𝑎𝑛, 𝑎𝑛−1, 𝑎𝑛−2, 𝑎𝑛−3, 𝑎𝑛−4) are (5, 3, 1, 2,
3, 7), (1, 7, 4, 2, 3, 5), then (P/Q), on simplification
are (10/27), (6/5) and quintuples, on ignoring negative
signs, are (70, 30, 20, 145, 165), (30, 18, 12, 29, 47)
respectively. In this way, we can determine 𝑛-tuples by
assigning different values to 𝑎, 𝑎1, to 𝑎𝑛−2.

3. Results and Discussion

A simple algebraic identity (𝑥2 + 𝑎)2 = 𝑥4 + 𝑎2 +
2𝑥2𝑎 can be transformed to Pythagorean’s quadruple
(𝑥2 + 2𝑎2

1)
2 = (𝑥2)2 + (2𝑎2

1)
2 + (2𝑥𝑎1)2 by substituting
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𝑎 = 2𝑎2
1, when 𝑥, 𝑎, 𝑎1 are real rational quantities. If

′𝑎′ happens to equal 2(𝑎2
1+𝑎

2
2+𝑎

2
3+𝑎

2
4+ ...+𝑎

2
𝑛−3), the

identity transforms to Pythagorean’s 𝑛-tuples, when
𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛−3 are real rational quantities. Also
the identity (𝑥2 + 𝑎2)2 − (𝑥2 − 𝑎2)2 = (2𝑥𝑎)2 it-
self is a Pythagorean’s triple. Similarly, substitut-
ing 𝑎2 with (𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ... + 𝑎2
𝑛−3) or 𝑥2 with

(𝑥2
1 + 𝑥2

2 + 𝑥2
3 + ... + 𝑥2

𝑛−3), the identity transforms to
Pythagorean’s 𝑛-tuples.
A close look at identity, (𝑥2

1 + 𝑎2)2 = (𝑥2
1 − 𝑎2)2 +

(2𝑥1𝑎)2 reveals that it has the potential to establish
a recursive relation in (𝑥2

1 + 𝑎2) provided (𝑥2
1 + 𝑎2)

also appears in right hand side. This objective can be
achieved if we substitute x1 appearing in term (2𝑥1𝑎)2

with (𝑥2
2 + 𝑎2

1)
2, such substitution renders

{(𝑥2
2 + 𝑎2

2)
2 + 𝑎2

2}
2 = {(𝑥2

2 + 𝑎2)2 − 𝑎2
2}

2 +{(2𝑎)2(𝑥2
2 +

𝑎2)2}.
Now (𝑥2

2+𝑎
2)2 appearing in the term {(2𝑎)2(𝑥2

2+𝑎
2)2}

can be substituted by (𝑥2
2 − 𝑎)2 + (2𝑥2𝑎)2 culminating

into a relation, {(𝑥2
2 + 𝑎

2)2 + 𝑎2}2 = {(𝑥2
2 + 𝑎

2)2 − 𝑎2
2}

2

+ {(2𝑎) (𝑥2
2 − 𝑎2)2} + {(2𝑎)2𝑥2}2 Successive sub-

stitution leads to generation of Pythagorean’s 𝑛-
tuples. Another method utilised is conversion of
an algebraic equation in to an identity. In this
method, n-tuples are repersented in algebraic form as
𝑎1𝑥, 𝑎2𝑥, 𝑎3𝑥, ..., 𝑎𝑛−2𝑥, (𝑎𝑛−1𝑥+𝑎) and (𝑎𝑛𝑥+𝑎) and
finding value of variable 𝑥 from relation (𝑎𝑛𝑥 + 𝑎)2 =

(𝑎𝑛−1𝑥 + 𝑎) + (𝑎1𝑥)2 + (𝑎2𝑥)2 + ... + (𝑎𝑛−2𝑥) then sub-
stituting this value of 𝑥 obtained from above equation,
in n-tuples in algebraic form.
Of these, the method, where recursive relation is used,
yields quintuples and higher tuples which have magni-
tudes too large to handle owing to the fact that as we
proceed from one tuple to one step higher, the values
of subsequent tuples get almost squared. Therefore,
methods other than this, are preferable, when tuples of
low values are required.
Overview of what we have proved, concludes to the fact,
expansion of (𝑥2 + 𝑎)2 or (𝑥2 + 𝑎)2 − (𝑥2 + 𝑎)2 yields a
term (2𝑥2𝑎) or (4𝑥2𝑎) containing ′𝑎′ which is utilised
for forming a set of squares (2𝑥𝑎1)2, (2𝑥𝑎2)2, (2𝑥𝑎3)2,
...,(2𝑥𝑎𝑛−2)2, establishment of a recursive relation in
triples can generate n-tuples and also tuples in alge-
braic form when put in relation (𝑎𝑛𝑥 + 𝑎)2 = (𝑎𝑛−1𝑥 +

𝑎)2 + (𝑎1𝑥)2 + (𝑎2𝑥)2 + (𝑎3𝑥)2 + ... + (𝑎𝑛−2𝑥 + 𝑎)2,can
be transformed to a linear equation leading to their
parameterisation.

4. Conclusion

Self-generating 𝑛-tuples literally means those
Pythagorean’s tuples that generate without any external
help. That means, such tuples should be by-product of
common algebraic identities and should spring up at
their own. Also 𝑛-tuples can be generated by writing
an algebraic equation, where each term in left hand
side as well as right hand side involve squares. Obtain-
ing value of variable 𝑥 from linear equation that was
reduced from quadratic equation involving squares and
then inserting this value in place of 𝑥 in algebraic terms,
yield 𝑛-tuples. Based on the identities including iden-
tity obtained from algebraic equation Pythagorean’s
n-tuples can be obtained from parametric solutions
listed below.

First Parametric Solution
{𝑥2 + 2(𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ... + 𝑎2
𝑛−3)}

2

= (𝑥2)2 + {2(𝑎2
1 + 𝑎2

2 + 𝑎2
3 + ... + 𝑎2

𝑛−3)}
2

+(2𝑎1𝑥)2 + (2𝑎2𝑥)2 + (2𝑎3𝑥)2 + ... + (2𝑎𝑛−3𝑥)2.

Second Parametric Solution
{𝑥2 + 2(𝑎2

1 + 𝑎2
2 + 𝑎2

3 + ... + 𝑎2
𝑛−2)}

2

= [(𝑥2) − {2(𝑎2
1 + 𝑎2

2 + 𝑎2
3 + ... + 𝑎2

𝑛−2)}
2

+(2𝑎1𝑥)2 + (2𝑎2𝑥)2 + (2𝑎3𝑥)2 + ... + (2𝑎𝑛−2𝑥)2.

Third Parametric Solution
[[{(𝑥2

𝑛−2 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 + ... + 𝑎2]2

= [[[{(𝑥2
𝑛−2 + 𝑎2)2 + 𝑎2}2 + 𝑎2]2 + ... − 𝑎2]2

+[2𝑎[{(𝑥2
𝑛−2 + 𝑎2)2 + 𝑎2}2 + ... − 𝑎2]]2

+[22𝑎2{(𝑥2
𝑛−2 + 𝑎2)2 + ... − 𝑎2}]2

+... + [2(𝑛−3)𝑎 (𝑛−3) (𝑥2
𝑛−2 − 𝑎2)]2

+[2(𝑛−2)𝑎 (𝑛−2) (𝑥𝑛−2)]2.

Fourth Parametric Solution
(𝑎𝑛𝑥 + 𝑎)2 = (𝑎𝑛−1𝑥 + 𝑎) + (𝑎1𝑥)2 + (𝑎2𝑥)2 + ... +
(𝑎𝑛−2𝑥)2, where,

𝑥 = −2𝑎
(𝑎𝑛−1 − 𝑎𝑛)

(𝑎2
1 + 𝑎2

2 + 𝑎2
3 + ... + 𝑎2

𝑛−1) − 𝑎2
𝑛

.
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and n-tuples 𝑎1𝑥, 𝑎2𝑥, 𝑎3𝑥, ..., (𝑎𝑛−1𝑥 + 𝑎) are con-
verted to integers by multiplication with lowest com-
mon multiplier.
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