Analysis in Materials Science by Predicting Concrete Compressive Strength Using Machine Learning

Authors

  • Taufiq Hakimi bin Mohamad Suffian Universiti Malaya
  • M. Bhuyan Center for Theoretical and Computational Physics, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia

Keywords:

machine learning, artificial intelligence, concrete compressive strenght

Abstract

Future developments in materials science engineering will be greatly influenced by the application of machine learning for determining the properties of concrete, especially its compressive strength. This research predicts the compressive strength of concrete with eight independent variables, including cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age using supervised machine learning (ML) techniques of linear regression (LR) and light  gradient boosting machine (LGBM). The ML models are fed a total of 1030 datasets using a 70:30 split ratio for training and testing. Performance metrics like R2 , MAE, MSE, and RMSE are used to assess how well the ML models are in making predictions. From the research, the LR model (R2 value of 0.607) is less effective than the LGBM model (R2 value of 0.920) in predicting compressive strength. Furthermore, feature importance predicted by LGBM shows that the cement content (2331), fine aggregate (2200), and coarse aggregate (2076) all significantly influence the prediction of concrete compressive strength

Downloads

Download data is not yet available.

References

T. Han, A. Siddique, K. Khayat, J. Huang, A. Kumar, Construction and Building Materials, 244,118271(2020).

https://doi.org/10.1016/j.conbuildmat.2020.118271

V. V. Degtyarev, M. Z. Naser, Structures, 34, 3391–3403 (2021).

https://doi.org/10.1016/j.istruc.2021.09.060

O. R. Abuodeh, J. A. Abdalla, R. A. Hawileh, Applied Soft Computing, 95, 106552 (2020).

https://doi.org/10.1016/j.asoc.2020.106552

K. L. Chung, L. Wang, M. Ghannam, M. Guan & J. Luo, Journal of Building Engineering, 35, 101998(2021).

https://doi.org/10.1016/j.jobe.2020.101998

Prasad, Concrete ingredients and important aspects, Structural Guide(2023).

Available at: https://www.structuralguide.com/concreteingredients/.

F. H. Chiew, International Conference on Computer and Drone Applications (IConDA) (2019).

https://doi.org/10.1109/iconda47345.2019.9034920

S. H. Kosmatka, W. C. Panarese, B. Kerkhoff, Design and control of concrete mixtures, Vol. 5420, pp. 60077-1083 (2002). Skokie, IL: Portland Cement Association.

C. LeBow, Effect of cement content on concrete performance. University of Arkansas (2018).

M. Saberian, J. Zhang, A. Gajanayake, J. Li, G. Zhang, & M. Boroujeni, Handbook of Sustainable Concrete and Industrial Waste Management, 637–659 (2022).

https://doi.org/10.1016/b978-0-12-821730-6.00007-3.

R. Flatt, I. Schober, Understanding the Rheology of Concrete, 144–208 (2012).

https://doi.org/10.1533/9780857095282.2.144.

W. Ben Chaabene, M. Flah & M. L. Nehdi, Construction and Building Materials, 260, 119889 (2020).

https://doi.org/10.1016/j.conbuildmat.2020.119889

D. C. Feng, Z. T. Liu, X. D. Wang, Y. Chen, J. Q. Chang, D. F. Wei & Z. M. Jiang, Construction and Building Materials, 230, 117000 (2020).

https://doi.org/10.1016/j.conbuildmat.2019.117000.

M. R. Kaloop, D. Kumar, P. Samui, J. W. Hu & D. Kim, Construction and Building Materials, 264, 120198 (2020).

https://doi.org/10.1016/j.conbuildmat.2020.120198.

A. Ahmad, F. Farooq, P. Niewiadomski, K. Ostrowski, A. Akbar, F. Aslam & R. Alyousef, Materials, 14(4), 794(2021).

https://doi.org/10.3390/ma14040794.

S. Chithra, S. R. R. S. Kumar, K. Chinnaraju & F. Alfin Ashmita, Construction and Building Materials, 114, 528–535 (2016).

https://doi.org/10.1016/j.conbuildmat.2016.03.214.

S. C. Lee, Engineering Structures, 25(7), 849–857(2003).

https://doi.org/10.1016/s0141-0296(03)00004-x.

H. Nguyen, T. Vu, T. P. Vo &, H. T. Thai, Construction and Building Materials, 266, 120950 (2021).

https://doi.org/10.1016/j.conbuildmat.2020.120950.

A. Kumar, H. C. Arora, N. R. Kapoor, M. A. Mohammed, K. Kumar, A. Majumdar & O. Thinnukool, Sustainability, 14(4), 2404 (2022).

https://doi.org/10.3390/su14042404.

J. Zhang, G. Ma, Y. Huang, J. Sun, F. Aslani & B. Nener, Construction and Building Materials, 210,713–719 (2019).

https://doi.org/10.1016/j.conbuildmat.2019.03.189.

I. C. Yeh, Cement and Concrete Research, 28(12), 1797–1808 (1998).

https://doi.org/10.1016/s0008-8846(98)00165-3

Published

2024-06-14

How to Cite

Taufiq Hakimi bin Mohamad Suffian, & Bhuyan, M. (2024). Analysis in Materials Science by Predicting Concrete Compressive Strength Using Machine Learning. Graduate Journal of Interdisciplinary Research, Reports and Reviews , 2(01), 54–62. Retrieved from https://jpr.vyomhansjournals.com/index.php/gjir/article/view/11

Issue

Section

Research Article

Categories