Nanodosimetry: A Study Using The Monte Carlo Code PENELOPE For The TG 6.2 of EURADOS WG 6

Authors

Keywords:

Nanodosimetry, Monte Carlo Simulation, PENELOPE, Low Energy Electrons

Abstract

Background: New technological developments have been made to measure absorbed dose on a small scale, especially at the micro- and nanoscale. Studies have been carried out with short-range ionizing radiation and low-energy particles in human cells to analyse the effect and response of DNA.

Purpose: In this work, a scenario in which a radioactive 125I irradiating several spheres of liquid water were simulated using the EURADOS exercise for computer-aided dosimetry.

Methods: The modelling and simulations were performed with PENELOPE Monte Carlo simulation code. The energy deposited on the targets was used for calculation and analysis.

Results: The obtained results were within acceptable uncertainties of up to 2% in all simulated cases. The average deviation of the results for the two different collisions configurations and the average deviation of the uncertainties obtained in the liquid water targets were 2.5% and 21%, respectively.

Conclusions: The code response was appropriate for the simulated deposited energies in the liquid water sphere, which showed a behavior curve in all configurations and quantitative differences with respect to the first target for different types of collisions.

Keywords: Nanodosimetry, Monte Carlo Simulation, Low Energy Electrons, PENELOPE

Downloads

Download data is not yet available.

References

V.C. Thipe, et al., Springer, Cham. (2023). https://doi.org/10.1007/978-3-031-16101-8_2

B. Sun, C.T. Hagan 4th, J. Caster, A.Z. Wang, Hematol Oncol Clin North Am., 33 (6):1071, (2019).

doi:10.1016/j.hoc.2019.08.002. Epub 2019 Oct 1. PMID: 31668207; PMCID: PMC6981287.

F.H. Attix, John Wiley & Sons, p-628, (1991).

J. M. DeCunha, Physics in Medicine & Biology, 66 185011, (2021).

A. Papadopoulos, I. Kyriakou, Y. Matsuya, S. Incerti, I. A. Daglis, D.Emfietzoglou, Appl. Sci., 12, 8950. (2022).

A. Baratto-Roldán, A. Bertolet, G. Baiocco, A. Carabe, M. A.Cortés-Giraldo, Frontiers in Physics. Vol. 9 ISSN 2296-424X, (2021).

S. A. Ngcezu, H. Rabus, Radiat Environ Biophys. 60(4), 559, (2021) doi:10.1007/s00411-021-00936-4

Epub 2021 Aug 24. PMID: 34427743; PMCID: PMC8551112..

Y. Ali, L. Auzel, C.Monini, K. Kriachok, J. M.Létang, E.Testa, L. Maigne, M. Beuve, Medical Physics. Vol. 49 (5), p.3457 (2022).

Y. Thibaut, N.Tang, H. N.Tran, A. Vaurijoux, C. Villagrasa, S. Incerti, Y. Perrot, Int. J. Mol. Sci. 23, 3770 (2022).

M. A. Bernal, et al. Physica Medica 31, 861, (2015).

A. Rucinski, A. Biernacka, R. Schulte, Phys. Med. Biol. 66 24TR01, 2021.

H. Palmans, British Journal of Radiol-ogy Vol. 88, No. 1045, (2015).

W. B. Li, et al., Radiation Meas-urements, Vol. 115, p. 29, (2018). https://doi.org/10.1016/j.radmeas.2018.05.013.

D. Mazzucconi, et al., Radiation Physics and Chemistry, Vol. 171, p.108729, ( 2020).

https://doi.org/10.1016/j.radphyschem.2020.108729.

L.T. Tran, et al., Appl. Sci. 12, p.328, (2022).

A. Rucinski, et al., Physics in Medicine & Biology, 66 24TR01, (2021).

C. Kirkby, E. Ghasroddashti, Medical Physics 42, p.1119, (2015).

P. Zygmanski, B. Liu, P. Tsiamas, F. Cifter, M. Petersheim, J. Hesser, E. Sajo, Phys. Med. Biol. 58 p.7961, (2013).

M. Pietrzak, M. Mietelska, A. Bancer, A. Rucinski, B. Brzozowska, Phys. Med. Biol. 66 p.225008, (2021).

M. A. Bernal, J. A. Liendo, Med Phys. 36(2): 620-5 Vol. 36, Issue 2, p. 620, (2009).

I. Kyriakou, et al., Applied Radiation and Isotopes, vol. 172, p.109654, (2021). https://doi.org/10.1016/j.apradiso.2021.109654

V. M. Markovic, et al., Radiation and Environmental Biophysics, Vol. 59, no 1, p.161 (2020). https://doi.org/10.1007/s00411-019-00815-z

N. T. Henthorn, et al., RSC Advances, Vol. 9, no 12, p. 6845, (2019). https://doi.org/10.1039/C8RA10168J

C. Villagrasa, et al., Radiation Protection Dosimetry. Vol. 183, Issue1-2, p.11, (2018).

C. Villagrasa, et al., Radiation Measurements. Vol.150, 106675. ISSN p.1350, (2022).

F. Salvat, OECD Nuclear Energy Agency, (2019).

I. Sechopoulos, et al., Medical Physics, Vol. 45, no 1, p. e1, (2018). https://doi.org/10.1002/mp.12702

R. W. Howell, Med. Phys. Vol. 19, Issue 6, p. 1371, (1992).

G. Hoff, R. S. Thomaz, L. I. Gutierres, S. Müller, R. M. Papaléo, IEEE. 978-1-5386-2282-7, (2017).

Downloads

Published

2023-11-29

How to Cite

Araújo, L., & Fonseca, T. (2023). Nanodosimetry: A Study Using The Monte Carlo Code PENELOPE For The TG 6.2 of EURADOS WG 6. Graduate Journal of Interdisciplinary Research, Reports and Reviews , 1(1), 33–40. Retrieved from https://jpr.vyomhansjournals.com/index.php/gjir/article/view/6

Issue

Section

Research Article

Categories

Similar Articles

You may also start an advanced similarity search for this article.